These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 31475059)
1. Platelet-Rich Plasma Pretreatment on Grit-Blasted Titanium Alloy for Enhanced Osteogenic Differentiation of Human Adipose-Derived Stem Cells. Hong SH; Nam J; Kim HJ; Yoo JJ Clin Orthop Surg; 2019 Sep; 11(3):361-368. PubMed ID: 31475059 [TBL] [Abstract][Full Text] [Related]
2. Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants. Cooper LF; Zhou Y; Takebe J; Guo J; Abron A; Holmén A; Ellingsen JE Biomaterials; 2006 Feb; 27(6):926-36. PubMed ID: 16112191 [TBL] [Abstract][Full Text] [Related]
3. Sustained delivery of BMP-2 and platelet-rich plasma-released growth factors contributes to osteogenesis of human adipose-derived stem cells. Chen L; Lu X; Li S; Sun Q; Li W; Song D Orthopedics; 2012 Sep; 35(9):e1402-9. PubMed ID: 22955409 [TBL] [Abstract][Full Text] [Related]
4. Partially Melted Ti6Al4V Particles Increase Bacterial Adhesion and Inhibit Osteogenic Activity on 3D-printed Implants: An In Vitro Study. Xie K; Guo Y; Zhao S; Wang L; Wu J; Tan J; Yang Y; Wu W; Jiang W; Hao Y Clin Orthop Relat Res; 2019 Dec; 477(12):2772-2782. PubMed ID: 31764350 [TBL] [Abstract][Full Text] [Related]
5. The influence of surface-blasting on the incorporation of titanium-alloy implants in a rabbit intramedullary model. Feighan JE; Goldberg VM; Davy D; Parr JA; Stevenson S J Bone Joint Surg Am; 1995 Sep; 77(9):1380-95. PubMed ID: 7673290 [TBL] [Abstract][Full Text] [Related]
7. Effect and Related Mechanism of Platelet-Rich Plasma on the Osteogenic Differentiation of Human Adipose-Derived Stem Cells. Chen J; Zhang Y; Liu M; Zhou Z; Li Q; Huang T; Yue Y; Tian Y Biomed Res Int; 2022; 2022():1256002. PubMed ID: 35978628 [TBL] [Abstract][Full Text] [Related]
8. Acid etching and plasma sterilization fail to improve osseointegration of grit blasted titanium implants. Saksø M; Jakobsen SS; Saksø H; Baas J; Jakobsen T; Søballe K Open Orthop J; 2012; 6():376-82. PubMed ID: 22962567 [TBL] [Abstract][Full Text] [Related]
9. Osteogenic potential of bone marrow stromal cells on smooth, roughened, and tricalcium phosphate-modified titanium alloy surfaces. Colombo JS; Carley A; Fleming GJ; Crean SJ; Sloan AJ; Waddington RJ Int J Oral Maxillofac Implants; 2012; 27(5):1029-42. PubMed ID: 23057015 [TBL] [Abstract][Full Text] [Related]
10. In vivo monitoring of the bone healing process around different titanium alloy implant surfaces placed into fresh extraction sockets. Colombo JS; Satoshi S; Okazaki J; Crean SJ; Sloan AJ; Waddington RJ J Dent; 2012 Apr; 40(4):338-46. PubMed ID: 22307025 [TBL] [Abstract][Full Text] [Related]
11. Comparison of biological characteristics of mesenchymal stem cells grown on two different titanium implant surfaces. Wang CY; Zhao BH; Ai HJ; Wang YW Biomed Mater; 2008 Mar; 3(1):015004. PubMed ID: 18458491 [TBL] [Abstract][Full Text] [Related]
12. Effect of Titanium Surfaces on the Osteogenic Differentiation of Human Adipose-Derived Stem Cells. Zanicotti DG; Duncan WJ; Seymour GJ; Coates DE Int J Oral Maxillofac Implants; 2018; 33(3):e77-e87. PubMed ID: 29763507 [TBL] [Abstract][Full Text] [Related]
13. Determining optimal surface roughness of TiO(2) blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone. Mustafa K; Wennerberg A; Wroblewski J; Hultenby K; Lopez BS; Arvidson K Clin Oral Implants Res; 2001 Oct; 12(5):515-25. PubMed ID: 11564113 [TBL] [Abstract][Full Text] [Related]
14. Enhanced cell integration to titanium alloy by surface treatment with microarc oxidation: a pilot study. Lim YW; Kwon SY; Sun DH; Kim HE; Kim YS Clin Orthop Relat Res; 2009 Sep; 467(9):2251-8. PubMed ID: 19434468 [TBL] [Abstract][Full Text] [Related]
15. The synergistic effect of TiO Jiang N; Du P; Qu W; Li L; Liu Z; Zhu S Int J Nanomedicine; 2016; 11():4719-4733. PubMed ID: 27695328 [TBL] [Abstract][Full Text] [Related]
16. Enhancing osseointegration of titanium implants through large-grit sandblasting combined with micro-arc oxidation surface modification. He W; Yin X; Xie L; Liu Z; Li J; Zou S; Chen J J Mater Sci Mater Med; 2019 Jun; 30(6):73. PubMed ID: 31187259 [TBL] [Abstract][Full Text] [Related]
17. Efficacy of bone defect therapy involving various surface treatments of titanium alloy implants: an in vivo and in vitro study. Wang B; Guo Y; Xu J; Zeng F; Ren T; Guo W Sci Rep; 2023 Nov; 13(1):20116. PubMed ID: 37978333 [TBL] [Abstract][Full Text] [Related]
18. Platelet-rich plasma alone is unable to trigger contact osteogenesis on titanium implant surfaces. Kim UG; Choi JY; Lee JB; Yeo IL Int J Implant Dent; 2022 Jun; 8(1):25. PubMed ID: 35666399 [TBL] [Abstract][Full Text] [Related]
19. Osteogenic differentiation of muscle satellite cells induced by platelet-rich plasma encapsulated in three-dimensional alginate scaffold. Huang S; Jia S; Liu G; Fang D; Zhang D Oral Surg Oral Med Oral Pathol Oral Radiol; 2012 Nov; 114(5 Suppl):S32-40. PubMed ID: 23083953 [TBL] [Abstract][Full Text] [Related]
20. Surface Roughness of Titanium Orthopedic Implants Alters the Biological Phenotype of Human Mesenchymal Stromal Cells. Lewallen EA; Trousdale WH; Thaler R; Yao JJ; Xu W; Denbeigh JM; Nair A; Kocher JP; Dudakovic A; Berry DJ; Cohen RC; Abdel MP; Lewallen DG; van Wijnen AJ Tissue Eng Part A; 2021 Dec; 27(23-24):1503-1516. PubMed ID: 33975459 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]