BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 31475284)

  • 1. Application of a bipolar nanopore as a sensor: rectification as an additional device function.
    Mádai E; Valiskó M; Boda D
    Phys Chem Chem Phys; 2019 Sep; 21(36):19772-19784. PubMed ID: 31475284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale modeling of a rectifying bipolar nanopore: Comparing Poisson-Nernst-Planck to Monte Carlo.
    Matejczyk B; Valiskó M; Wolfram MT; Pietschmann JF; Boda D
    J Chem Phys; 2017 Mar; 146(12):124125. PubMed ID: 28388126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rectification of bipolar nanopores in multivalent electrolytes: effect of charge inversion and strong ionic correlations.
    Fertig D; Valiskó M; Boda D
    Phys Chem Chem Phys; 2020 Sep; 22(34):19033-19045. PubMed ID: 32812580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of a model nanopore sensor: Ion competition underlies device behavior.
    Mádai E; Valiskó M; Dallos A; Boda D
    J Chem Phys; 2017 Dec; 147(24):244702. PubMed ID: 29289138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale analysis of the effect of surface charge pattern on a nanopore's rectification and selectivity properties: From all-atom model to Poisson-Nernst-Planck.
    Valiskó M; Matejczyk B; Ható Z; Kristóf T; Mádai E; Fertig D; Gillespie D; Boda D
    J Chem Phys; 2019 Apr; 150(14):144703. PubMed ID: 30981242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling ion transport through nanopores: modeling transistor behavior.
    Mádai E; Matejczyk B; Dallos A; Valiskó M; Boda D
    Phys Chem Chem Phys; 2018 Oct; 20(37):24156-24167. PubMed ID: 30206599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On Rectification of Ionic Current in Nanopores.
    Wen C; Zeng S; Li S; Zhang Z; Zhang SL
    Anal Chem; 2019 Nov; 91(22):14597-14604. PubMed ID: 31644866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of linear surface-charge non-uniformities on the electrokinetic ionic-current rectification in conical nanopores.
    Qian S; Joo SW; Ai Y; Cheney MA; Hou W
    J Colloid Interface Sci; 2009 Jan; 329(2):376-83. PubMed ID: 18977486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poisson-Nernst-Planck model of ion current rectification through a nanofluidic diode.
    Constantin D; Siwy ZS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041202. PubMed ID: 17994972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method to tune the ionic current rectification of track-etched nanopores by using surfactant.
    Wang L; Yan Y; Xie Y; Chen L; Xue J; Yan S; Wang Y
    Phys Chem Chem Phys; 2011 Jan; 13(2):576-81. PubMed ID: 21038062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Simulation Analysis of Nanofluidic Ion Current Rectification Using a Metal-Dielectric Janus Nanopore Driven by Induced-Charge Electrokinetic Phenomena.
    Liu W; Sun Y; Yan H; Ren Y; Song C; Wu Q
    Micromachines (Basel); 2020 May; 11(6):. PubMed ID: 32471139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct numerical simulation of electrokinetic translocation of a cylindrical particle through a nanopore using a Poisson-Boltzmann approach.
    Ai Y; Qian S
    Electrophoresis; 2011 Apr; 32(9):996-1005. PubMed ID: 21455912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluoride-induced modulation of ionic transport in asymmetric nanopores functionalized with "caged" fluorescein moieties.
    Ali M; Ahmed I; Ramirez P; Nasir S; Cervera J; Niemeyer CM; Ensinger W
    Nanoscale; 2016 Apr; 8(16):8583-90. PubMed ID: 27050623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric diffusion through synthetic nanopores.
    Siwy Z; Kosińska ID; Fuliński A; Martin CR
    Phys Rev Lett; 2005 Feb; 94(4):048102. PubMed ID: 15783605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarization of Gold in Nanopores Leads to Ion Current Rectification.
    Yang C; Hinkle P; Menestrina J; Vlassiouk IV; Siwy ZS
    J Phys Chem Lett; 2016 Oct; 7(20):4152-4158. PubMed ID: 27690449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new drug-sensing paradigm based on ion-current rectification in a conically shaped nanopore.
    Wang J; Martin CR
    Nanomedicine (Lond); 2008 Feb; 3(1):13-20. PubMed ID: 18393663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From nanotubes to nanoholes: Scaling of selectivity in uniformly charged nanopores through the Dukhin number for 1:1 electrolytes.
    Sarkadi Z; Fertig D; Ható Z; Valiskó M; Boda D
    J Chem Phys; 2021 Apr; 154(15):154704. PubMed ID: 33887923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale modeling of a rectifying bipolar nanopore: explicit-water versus implicit-water simulations.
    Ható Z; Valiskó M; Kristóf T; Gillespie D; Boda D
    Phys Chem Chem Phys; 2017 Jul; 19(27):17816-17826. PubMed ID: 28657634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Publisher's Note: "Multiscale analysis of the effect of surface charge pattern on a nanopore's rectification and selectivity properties: From all-atom model to Poisson-Nernst-Planck" [J. Chem. Phys. 150, 144703 (2019)].
    Valiskó M; Matejczyk B; Ható Z; Kristóf T; Mádai E; Fertig D; Gillespie D; Boda D
    J Chem Phys; 2019 May; 150(17):179902. PubMed ID: 31067905
    [No Abstract]   [Full Text] [Related]  

  • 20. Spatial profiles of potential, ion concentration and flux in short unipolar and bipolar nanopores.
    Tajparast M; Virdi G; Glavinović MI
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2138-53. PubMed ID: 26079796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.