These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31475716)

  • 1. Continuous focusing, fractionation and extraction of anionic analytes in a microfluidic chip.
    Papadimitriou VA; Segerink LI; Eijkel JCT
    Lab Chip; 2019 Sep; 19(19):3238-3248. PubMed ID: 31475716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Droplet encapsulation of electrokinetically-focused analytes without loss of resolution.
    Papadimitriou VA; Kruit SA; Segerink LI; Eijkel JCT
    Lab Chip; 2020 Jun; 20(12):2209-2217. PubMed ID: 32432628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free Flow Ion Concentration Polarization Focusing (FF-ICPF).
    Papadimitriou VA; Segerink LI; Eijkel JCT
    Anal Chem; 2020 Apr; 92(7):4866-4874. PubMed ID: 32195578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tutorial review: Enrichment and separation of neutral and charged species by ion concentration polarization focusing.
    Berzina B; Anand RK
    Anal Chim Acta; 2020 Sep; 1128():149-173. PubMed ID: 32825899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Droplet-based in situ compartmentalization of chemically separated components after isoelectric focusing in a Slipchip.
    Zhao Y; Pereira F; deMello AJ; Morgan H; Niu X
    Lab Chip; 2014 Feb; 14(3):555-61. PubMed ID: 24292781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical Simulation of Continuous Extraction of Li
    Zhang D; Zhang X; Xing L; Li Z
    Membranes (Basel); 2021 Sep; 11(9):. PubMed ID: 34564514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic electroporation of robust 10-microm vesicles for manipulation of picoliter volumes.
    Lee ES; Robinson D; Rognlien JL; Harnett CK; Simmons BA; Bowe Ellis CR; Davalos RV
    Bioelectrochemistry; 2006 Sep; 69(1):117-25. PubMed ID: 16483852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic device enabling surface-enhanced Raman spectroscopy at chip-integrated multifunctional nanoporous membranes.
    Krafft B; Panneerselvam R; Geissler D; Belder D
    Anal Bioanal Chem; 2020 Jan; 412(2):267-277. PubMed ID: 31797018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic high-resolution free-flow isoelectric focusing.
    Kohlheyer D; Eijkel JC; Schlautmann S; van den Berg A; Schasfoort RB
    Anal Chem; 2007 Nov; 79(21):8190-8. PubMed ID: 17902700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous separation of fungal spores in a microfluidic flow focusing device.
    Park BS; Kye HG; Kim TH; Lee JM; Ahrberg CD; Cho EM; Yang SI; Chung BG
    Analyst; 2019 Aug; 144(16):4962-4971. PubMed ID: 31322144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Focusing analytes from 50 μL into 500 pL: On-chip focusing from large sample volumes using isotachophoresis.
    van Kooten XF; Truman-Rosentsvit M; Kaigala GV; Bercovici M
    Sci Rep; 2017 Sep; 7(1):10467. PubMed ID: 28874694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplexed electrokinetic sample fractionation, preconcentration and elution for proteomics.
    Hua Y; Jemere AB; Dragoljic J; Harrison DJ
    Lab Chip; 2013 Jul; 13(13):2651-9. PubMed ID: 23712291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent developments in electrophoretic separations on microfluidic devices.
    Kenyon SM; Meighan MM; Hayes MA
    Electrophoresis; 2011 Feb; 32(5):482-93. PubMed ID: 21290388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microscale isoelectric fractionation using photopolymerized membranes.
    Sommer GJ; Mai J; Singh AK; Hatch AV
    Anal Chem; 2011 Apr; 83(8):3120-5. PubMed ID: 21417312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and implementation of an automated liquid-phase microextraction-chip system coupled on-line with high performance liquid chromatography.
    Li B; Petersen NJ; Payán MD; Hansen SH; Pedersen-Bjergaard S
    Talanta; 2014 Mar; 120():224-9. PubMed ID: 24468363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous Separation of DNA Molecules by Size Using Insulator-Based Dielectrophoresis.
    Jones PV; Salmon GL; Ros A
    Anal Chem; 2017 Feb; 89(3):1531-1539. PubMed ID: 27936618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extraction of electrokinetically separated analytes with on-demand encapsulation.
    van Kooten XF; Bercovici M; Kaigala GV
    Lab Chip; 2018 Dec; 18(23):3588-3597. PubMed ID: 30358796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous extraction of acidic and basic drugs via on-chip electromembrane extraction using a single-compartment microfluidic device.
    Zarghampour F; Yamini Y; Baharfar M; Faraji M
    Analyst; 2019 Feb; 144(4):1159-1166. PubMed ID: 30539185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternating Current Cloud Point Extraction on a Microfluidic Chip: the Use of Ferrocenyl Surfactants.
    Usui Y; Sasaki N
    Anal Sci; 2016; 32(1):109-11. PubMed ID: 26753715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective ion extraction: a separation method for microfluidic devices.
    Kerby MB; Spaid M; Wu S; Parce JW; Chien RL
    Anal Chem; 2002 Oct; 74(20):5175-83. PubMed ID: 12403568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.