These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31475999)

  • 1. Self-assembly of engineered protein nanocages into reversible ordered 3D superlattices mediated by zinc ions.
    Chen H; Zhou K; Wang Y; Zang J; Zhao G
    Chem Commun (Camb); 2019 Sep; 55(75):11299-11302. PubMed ID: 31475999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic self-assembly of surface functionalized metal-organic polyhedra nanocages and their ordered honeycomb architecture at the air/water interface.
    Li Y; Zhang D; Gai F; Zhu X; Guo YN; Ma T; Liu Y; Huo Q
    Chem Commun (Camb); 2012 Aug; 48(64):7946-8. PubMed ID: 22760593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redesign of protein nanocages: the way from 0D, 1D, 2D to 3D assembly.
    Lv C; Zhang X; Liu Y; Zhang T; Chen H; Zang J; Zheng B; Zhao G
    Chem Soc Rev; 2021 Mar; 50(6):3957-3989. PubMed ID: 33587075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-Axis Alignment of Protein Nanocage Assemblies from 2D to 3D through the Aromatic Stacking Interactions of Amino Acid Residues.
    Zhou K; Zang J; Chen H; Wang W; Wang H; Zhao G
    ACS Nano; 2018 Nov; 12(11):11323-11332. PubMed ID: 30265511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmed Self-Assembly of Hierarchical Nanostructures through Protein-Nanoparticle Coengineering.
    Mout R; Yesilbag Tonga G; Wang LS; Ray M; Roy T; Rotello VM
    ACS Nano; 2017 Apr; 11(4):3456-3462. PubMed ID: 28225593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of ordered nanostructures of sulfide nanocrystal assemblies over self-assembled genetically engineered P22 coat protein.
    Shen L; Bao N; Prevelige PE; Gupta A
    J Am Chem Soc; 2010 Dec; 132(49):17354-7. PubMed ID: 21090711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Murray CB; O'Brien S
    J Am Chem Soc; 2006 Mar; 128(11):3620-37. PubMed ID: 16536535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disulfide-mediated reversible two-dimensional self-assembly of protein nanocages.
    Zhou K; Chen H; Zhang S; Wang Y; Zhao G
    Chem Commun (Camb); 2019 Jul; 55(52):7510-7513. PubMed ID: 31187817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembly of Core-Corona β-Glucan into Stiff and Metalizable Nanostructures from 1D to 3D.
    Wu C; Wang X; Chu B; Tang S; Wang Y
    ACS Nano; 2018 Oct; 12(10):10545-10553. PubMed ID: 30234296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape change of nanocontainers via a reversible ionic buckling.
    Sknepnek R; Vernizzi G; de la Cruz MO
    Phys Rev Lett; 2011 May; 106(21):215504. PubMed ID: 21699315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Helical nanostructures self-assembled from optically active phthalocyanine derivatives bearing four optically active binaphthyl moieties: effect of metal-ligand coordination on the morphology, dimension, and helical pitch of self-assembled nanostructures.
    Wu L; Wang Q; Lu J; Bian Y; Jiang J; Zhang X
    Langmuir; 2010 May; 26(10):7489-97. PubMed ID: 20218550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constructing Higher-Order DNA Nanoarchitectures with Highly Purified DNA Nanocages.
    Xing S; Jiang D; Li F; Li J; Li Q; Huang Q; Guo L; Xia J; Shi J; Fan C; Zhang L; Wang L
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13174-9. PubMed ID: 25345465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of orientation-ordered superlattices of magnetite magnetic nanocrystals from shape-segregated self-assemblies.
    Song Q; Ding Y; Wang ZL; Zhang ZJ
    J Phys Chem B; 2006 Dec; 110(50):25547-50. PubMed ID: 17166006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-dependent X-ray absorption spectroscopic (XAS) study on the transformation of zinc basic salt into bis(N-oxopyridine-2-thionato) zinc (II).
    Paek SM; Jo WY; Park M; Choy JH
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3867-71. PubMed ID: 18047076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disulfide-mediated conversion of 8-mer bowl-like protein architecture into three different nanocages.
    Zang J; Chen H; Zhang X; Zhang C; Guo J; Du M; Zhao G
    Nat Commun; 2019 Feb; 10(1):778. PubMed ID: 30770832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteins as supramolecular building blocks: Nterm-Lsr2 as a new protein tecton.
    Ashmead HM; Negron L; Webster K; Arcus V; Gerrard JA
    Biopolymers; 2015 May; 103(5):260-70. PubMed ID: 25418906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triggered Reversible Disassembly of an Engineered Protein Nanocage*.
    Jones JA; Cristie-David AS; Andreas MP; Giessen TW
    Angew Chem Int Ed Engl; 2021 Nov; 60(47):25034-25041. PubMed ID: 34532937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled arrays of self-assembled peptide nanostructures in solution and at interface.
    Wang JX; Lei Q; Luo GF; Cai TT; Li JL; Cheng SX; Zhuo RX; Zhang XZ
    Langmuir; 2013 Jun; 29(23):6996-7004. PubMed ID: 23663135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of human mesenchymal stem cell behavior on ordered tantalum nanotopographies fabricated using colloidal lithography and glancing angle deposition.
    Wang PY; Bennetsen DT; Foss M; Ameringer T; Thissen H; Kingshott P
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4979-89. PubMed ID: 25664369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designed Two- and Three-Dimensional Protein Nanocage Networks Driven by Hydrophobic Interactions Contributed by Amyloidogenic Motifs.
    Zheng B; Zhou K; Zhang T; Lv C; Zhao G
    Nano Lett; 2019 Jun; 19(6):4023-4028. PubMed ID: 31099248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.