These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 31476136)
21. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161 [TBL] [Abstract][Full Text] [Related]
22. The Effect of Agglomeration on the Electrical and Mechanical Properties of Polymer Matrix Nanocomposites Reinforced with Carbon Nanotubes. Tamayo-Vegas S; Muhsan A; Liu C; Tarfaoui M; Lafdi K Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35567011 [TBL] [Abstract][Full Text] [Related]
23. Piezoresistive Theory and Numerical Calculation for Carbon Nanotube Polymer Composite. Huang Z; Song Y; Zhao X; Hou H Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005020 [TBL] [Abstract][Full Text] [Related]
24. Estimation of the physical properties of nanocomposites by finite-element discretization and Monte Carlo simulation. Spanos P; Elsbernd P; Ward B; Koenck T Philos Trans A Math Phys Eng Sci; 2013 Jun; 371(1993):20120494. PubMed ID: 23690646 [TBL] [Abstract][Full Text] [Related]
25. Thermal Conductivity of Polyamide-6,6/Carbon Nanotube Composites: Effects of Tube Diameter and Polymer Linkage between Tubes. Keshtkar M; Mehdipour N; Eslami H Polymers (Basel); 2019 Sep; 11(9):. PubMed ID: 31500250 [TBL] [Abstract][Full Text] [Related]
26. The structure and the percolation behavior of a mixture of carbon nanotubes and molecular junctions: a Monte Carlo simulation study. Kwon G; Jung HT; Shin K; Sung BJ J Nanosci Nanotechnol; 2011 May; 11(5):4317-23. PubMed ID: 21780449 [TBL] [Abstract][Full Text] [Related]
27. Investigating the Inter-Tube Conduction Mechanism in Polycarbonate Nanocomposites Prepared with Conductive Polymer-Coated Carbon Nanotubes. Ventura IA; Zhou J; Lubineau G Nanoscale Res Lett; 2015 Dec; 10(1):485. PubMed ID: 26676996 [TBL] [Abstract][Full Text] [Related]
28. Electrical percolation thresholds of semiconducting single-walled carbon nanotube networks in field-effect transistors. Jang HK; Jin JE; Choi JH; Kang PS; Kim DH; Kim GT Phys Chem Chem Phys; 2015 Mar; 17(10):6874-80. PubMed ID: 25673219 [TBL] [Abstract][Full Text] [Related]
29. Effects of inter-tube distance and alignment on tunnelling resistance and strain sensitivity of nanotube/polymer composite films. Rahman R; Servati P Nanotechnology; 2012 Feb; 23(5):055703. PubMed ID: 22236792 [TBL] [Abstract][Full Text] [Related]
30. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. Marconnet AM; Yamamoto N; Panzer MA; Wardle BL; Goodson KE ACS Nano; 2011 Jun; 5(6):4818-25. PubMed ID: 21598962 [TBL] [Abstract][Full Text] [Related]
31. Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Alamusi ; Hu N; Fukunaga H; Atobe S; Liu Y; Li J Sensors (Basel); 2011; 11(11):10691-723. PubMed ID: 22346667 [TBL] [Abstract][Full Text] [Related]
32. Influence of Carbon Nanotube-Pretreatment on the Properties of Polydimethylsiloxane/Carbon Nanotube-Nanocomposites. Diekmann A; Omelan MCV; Giese U Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33919258 [TBL] [Abstract][Full Text] [Related]
33. Attaining Toughness and Reduced Electrical Percolation Thresholds in Bio-Based PA410 by Combined Addition of Bio-Based Thermoplastic Elastomers and CNTs. Otaegi I; Aranburu N; Guerrica-Echevarría G Polymers (Basel); 2021 Oct; 13(19):. PubMed ID: 34641235 [TBL] [Abstract][Full Text] [Related]
34. Characterization of multi-walled carbon nanotube-polymer nanocomposites by scanning spreading resistance microscopy. Souier T; Stefancich M; Chiesa M Nanotechnology; 2012 Oct; 23(40):405704. PubMed ID: 22995850 [TBL] [Abstract][Full Text] [Related]
35. Using a Novel Approach to Estimate Packing Density and Related Electrical Resistance in Multiwall Carbon Nanotube Networks. Philipose U; Jiang Y; Farmer G; Howard C; Harcrow M; Littler C; Lopes V; Syllaios AJ; Sood A; Zeller JW Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33256198 [TBL] [Abstract][Full Text] [Related]
36. Calculating the Electrical Conductivity of Graphene Nanoplatelet Polymer Composites by a Monte Carlo Method. Fang C; Zhang J; Chen X; Weng GJ Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32521611 [TBL] [Abstract][Full Text] [Related]
37. Biodegradability of carbon nanotube/polymer nanocomposites under aerobic mixed culture conditions. Phan DC; Goodwin DG; Frank BP; Bouwer EJ; Fairbrother DH Sci Total Environ; 2018 Oct; 639():804-814. PubMed ID: 29803051 [TBL] [Abstract][Full Text] [Related]
38. A facile route to isotropic conductive nanocomposites by direct polymer infiltration of carbon nanotube sponges. Gui X; Li H; Zhang L; Jia Y; Liu L; Li Z; Wei J; Wang K; Zhu H; Tang Z; Wu D; Cao A ACS Nano; 2011 Jun; 5(6):4276-83. PubMed ID: 21591806 [TBL] [Abstract][Full Text] [Related]
39. Carbon Nanotube Reinforced Supramolecular Hydrogels for Bioapplications. Mihajlovic M; Mihajlovic M; Dankers PYW; Masereeuw R; Sijbesma RP Macromol Biosci; 2019 Jan; 19(1):e1800173. PubMed ID: 30085403 [TBL] [Abstract][Full Text] [Related]
40. Theoretical characterization of the topology of connected carbon nanotubes in random networks. Heitz J; Leroy Y; Hébrard L; Lallement C Nanotechnology; 2011 Aug; 22(34):345703. PubMed ID: 21795773 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]