These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 31476360)
1. A data augmentation approach to train fully convolutional networks for left ventricle segmentation. Lin A; Wu J; Yang X Magn Reson Imaging; 2020 Feb; 66():152-164. PubMed ID: 31476360 [TBL] [Abstract][Full Text] [Related]
2. Dynamic pixel-wise weighting-based fully convolutional neural networks for left ventricle segmentation in short-axis MRI. Wang Z; Xie L; Qi J Magn Reson Imaging; 2020 Feb; 66():131-140. PubMed ID: 31465788 [TBL] [Abstract][Full Text] [Related]
3. Automated segmentation of the left ventricle from MR cine imaging based on deep learning architecture. Qin W; Wu Y; Li S; Chen Y; Yang Y; Liu X; Zheng H; Liang D; Hu Z Biomed Phys Eng Express; 2020 Feb; 6(2):025009. PubMed ID: 33438635 [TBL] [Abstract][Full Text] [Related]
4. Fully automated cardiac MRI segmentation using dilated residual network. Ahmad F; Hou W; Xiong J; Xia Z Med Phys; 2023 Apr; 50(4):2162-2175. PubMed ID: 36395472 [TBL] [Abstract][Full Text] [Related]
5. Automated left ventricular segmentation from cardiac magnetic resonance images via adversarial learning with multi-stage pose estimation network and co-discriminator. Wu H; Lu X; Lei B; Wen Z Med Image Anal; 2021 Feb; 68():101891. PubMed ID: 33260108 [TBL] [Abstract][Full Text] [Related]
6. A segmentation method combining probability map and boundary based on multiple fully convolutional networks and repetitive training. Yin W; Hu Y; Yi S; He J Phys Med Biol; 2019 Sep; 64(18):185003. PubMed ID: 30808019 [TBL] [Abstract][Full Text] [Related]
7. Fully Automatic initialization and segmentation of left and right ventricles for large-scale cardiac MRI using a deeply supervised network and 3D-ASM. Hu H; Pan N; Frangi AF Comput Methods Programs Biomed; 2023 Oct; 240():107679. PubMed ID: 37364366 [TBL] [Abstract][Full Text] [Related]
8. Fully convolutional multi-scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers. Khened M; Kollerathu VA; Krishnamurthi G Med Image Anal; 2019 Jan; 51():21-45. PubMed ID: 30390512 [TBL] [Abstract][Full Text] [Related]
10. Small training dataset convolutional neural networks for application-specific super-resolution microscopy. Mannam V; Howard S J Biomed Opt; 2023 Mar; 28(3):036501. PubMed ID: 36925620 [TBL] [Abstract][Full Text] [Related]
11. Influence of Data Augmentation Strategies on the Segmentation of Oral Histological Images Using Fully Convolutional Neural Networks. Dos Santos DFD; de Faria PR; Travençolo BAN; do Nascimento MZ J Digit Imaging; 2023 Aug; 36(4):1608-1623. PubMed ID: 37012446 [TBL] [Abstract][Full Text] [Related]
12. Label cleaning and propagation for improved segmentation performance using fully convolutional networks. Sugino T; Suzuki Y; Kin T; Saito N; Onogi S; Kawase T; Mori K; Nakajima Y Int J Comput Assist Radiol Surg; 2021 Mar; 16(3):349-361. PubMed ID: 33655468 [TBL] [Abstract][Full Text] [Related]
13. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
14. Left ventricle automatic segmentation in cardiac MRI using a combined CNN and U-net approach. Wu B; Fang Y; Lai X Comput Med Imaging Graph; 2020 Jun; 82():101719. PubMed ID: 32325284 [TBL] [Abstract][Full Text] [Related]
15. Performance improvement of weakly supervised fully convolutional networks by skip connections for brain structure segmentation. Sugino T; Roth HR; Oda M; Kin T; Saito N; Nakajima Y; Mori K Med Phys; 2021 Nov; 48(11):7215-7227. PubMed ID: 34453333 [TBL] [Abstract][Full Text] [Related]
16. Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images. Zabihollahy F; White JA; Ukwatta E Med Phys; 2019 Apr; 46(4):1740-1751. PubMed ID: 30734937 [TBL] [Abstract][Full Text] [Related]
17. An iterative multi-path fully convolutional neural network for automatic cardiac segmentation in cine MR images. Ma Z; Wu X; Wang X; Song Q; Yin Y; Cao K; Wang Y; Zhou J Med Phys; 2019 Dec; 46(12):5652-5665. PubMed ID: 31605627 [TBL] [Abstract][Full Text] [Related]
18. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images. Tong N; Gou S; Yang S; Cao M; Sheng K Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188 [TBL] [Abstract][Full Text] [Related]
19. Assessment of Bi-Ventricular and Bi-Atrial Areas Using Four-Chamber Cine Cardiovascular Magnetic Resonance Imaging: Fully Automated Segmentation with a U-Net Convolutional Neural Network. Arai H; Kawakubo M; Sanui K; Iwamoto R; Nishimura H; Kadokami T Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162424 [TBL] [Abstract][Full Text] [Related]
20. A Novel Framework With Weighted Decision Map Based on Convolutional Neural Network for Cardiac MR Segmentation. Li FY; Li W; Gao X; Xiao B IEEE J Biomed Health Inform; 2022 May; 26(5):2228-2239. PubMed ID: 34851840 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]