These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31476428)

  • 1. Individual differences in parietal and frontal cortex structure predict dissociable capacities for perception and cognitive control.
    Eayrs JO; Lavie N
    Neuroimage; 2019 Nov; 202():116148. PubMed ID: 31476428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The neural basis of executive function in working memory: an fMRI study based on individual differences.
    Osaka N; Osaka M; Kondo H; Morishita M; Fukuyama H; Shibasaki H
    Neuroimage; 2004 Feb; 21(2):623-31. PubMed ID: 14980565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual Short-Term Memory Activity in Parietal Lobe Reflects Cognitive Processes beyond Attentional Selection.
    Sheremata SL; Somers DC; Shomstein S
    J Neurosci; 2018 Feb; 38(6):1511-1519. PubMed ID: 29311140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociation of mnemonic and perceptual processes during spatial and nonspatial working memory using fMRI.
    Belger A; Puce A; Krystal JH; Gore JC; Goldman-Rakic P; McCarthy G
    Hum Brain Mapp; 1998; 6(1):14-32. PubMed ID: 9673660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrete capacity limits and neuroanatomical correlates of visual short-term memory for objects and spatial locations.
    Konstantinou N; Constantinidou F; Kanai R
    Hum Brain Mapp; 2017 Feb; 38(2):767-778. PubMed ID: 27684499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishing individual differences in perceptual capacity.
    Eayrs J; Lavie N
    J Exp Psychol Hum Percept Perform; 2018 Aug; 44(8):1240-1257. PubMed ID: 29578735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociated roles of the parietal and frontal cortices in the scope and control of attention during visual working memory.
    Li S; Cai Y; Liu J; Li D; Feng Z; Chen C; Xue G
    Neuroimage; 2017 Apr; 149():210-219. PubMed ID: 28131893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuro-cognitive mechanisms of simultanagnosia in patients with posterior cortical atrophy.
    Neitzel J; Ortner M; Haupt M; Redel P; Grimmer T; Yakushev I; Drzezga A; Bublak P; Preul C; Sorg C; Finke K
    Brain; 2016 Dec; 139(Pt 12):3267-3280. PubMed ID: 27702740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does working memory capacity predict cross-modally induced failures of awareness?
    Kreitz C; Furley P; Simons DJ; Memmert D
    Conscious Cogn; 2016 Jan; 39():18-27. PubMed ID: 26658847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural correlates of the attentional blink.
    Marois R; Chun MM; Gore JC
    Neuron; 2000 Oct; 28(1):299-308. PubMed ID: 11087002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferior parietal and right frontal contributions to trial-by-trial adaptations of attention to memory.
    Kizilirmak JM; Rösler F; Bien S; Khader PH
    Brain Res; 2015 Jul; 1614():14-27. PubMed ID: 25892601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a superior frontal-intraparietal network for visuo-spatial working memory.
    Klingberg T
    Neuropsychologia; 2006; 44(11):2171-7. PubMed ID: 16405923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Encoding strategy accounts for individual differences in change detection measures of VSTM.
    Linke AC; Vicente-Grabovetsky A; Mitchell DJ; Cusack R
    Neuropsychologia; 2011 May; 49(6):1476-86. PubMed ID: 21130789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rostral prefrontal cortex underlies individual differences in working memory capacity: An approach from the hierarchical model of the cognitive control.
    Minamoto T; Yaoi K; Osaka M; Osaka N
    Cortex; 2015 Oct; 71():277-90. PubMed ID: 26280275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissociable causal roles for left and right parietal cortex in controlling attentional biases from the contents of working memory.
    Kiyonaga A; Korb FM; Lucas J; Soto D; Egner T
    Neuroimage; 2014 Oct; 100():200-5. PubMed ID: 24945665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Working memory load influences perceptual ambiguity by competing for fronto-parietal attentional resources.
    Intaitė M; Duarte JV; Castelo-Branco M
    Brain Res; 2016 Nov; 1650():142-151. PubMed ID: 27590722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delay-period activity in frontal, parietal, and occipital cortex tracks noise and biases in visual working memory.
    Yu Q; Panichello MF; Cai Y; Postle BR; Buschman TJ
    PLoS Biol; 2020 Sep; 18(9):e3000854. PubMed ID: 32898172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrete object representation, attention switching, and task difficulty in the parietal lobe.
    Cusack R; Mitchell DJ; Duncan J
    J Cogn Neurosci; 2010 Jan; 22(1):32-47. PubMed ID: 19199425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parietal-Occipital Interactions Underlying Control- and Representation-Related Processes in Working Memory for Nonspatial Visual Features.
    Gosseries O; Yu Q; LaRocque JJ; Starrett MJ; Rose NS; Cowan N; Postle BR
    J Neurosci; 2018 May; 38(18):4357-4366. PubMed ID: 29636395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distributed patterns of occipito-parietal functional connectivity predict the precision of visual working memory.
    Galeano Weber EM; Hahn T; Hilger K; Fiebach CJ
    Neuroimage; 2017 Feb; 146():404-418. PubMed ID: 27721028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.