These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31476428)

  • 41. Ventral fronto-parietal contributions to the disruption of visual working memory storage.
    Hakun JG; Ravizza SM
    Neuroimage; 2016 Jan; 124(Pt A):783-793. PubMed ID: 26436710
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrical Stimulation Over Human Posterior Parietal Cortex Selectively Enhances the Capacity of Visual Short-Term Memory.
    Wang S; Itthipuripat S; Ku Y
    J Neurosci; 2019 Jan; 39(3):528-536. PubMed ID: 30459222
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of fMRI activation at 3 and 1.5 T during perceptual, cognitive, and affective processing.
    Krasnow B; Tamm L; Greicius MD; Yang TT; Glover GH; Reiss AL; Menon V
    Neuroimage; 2003 Apr; 18(4):813-26. PubMed ID: 12725758
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neuronal substrates of Corsi Block span: Lesion symptom mapping analyses in relation to attentional competition and spatial bias.
    Chechlacz M; Rotshtein P; Humphreys GW
    Neuropsychologia; 2014 Nov; 64():240-51. PubMed ID: 25281309
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dissociable components of spatial neglect associated with frontal and parietal lesions.
    Saj A; Verdon V; Hauert CA; Vuilleumier P
    Neuropsychologia; 2018 Jul; 115():60-69. PubMed ID: 29477838
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Maintaining coherence of dynamic objects requires coordination of neural systems extended from anterior frontal to posterior parietal brain cortices.
    Imaruoka T; Saiki J; Miyauchi S
    Neuroimage; 2005 May; 26(1):277-84. PubMed ID: 15862228
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Flexible, capacity-limited activity of posterior parietal cortex in perceptual as well as visual short-term memory tasks.
    Mitchell DJ; Cusack R
    Cereb Cortex; 2008 Aug; 18(8):1788-98. PubMed ID: 18042643
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dissociable neural mechanisms underlie currently-relevant, future-relevant, and discarded working memory representations.
    Lorenc ES; Vandenbroucke ARE; Nee DE; de Lange FP; D'Esposito M
    Sci Rep; 2020 Jul; 10(1):11195. PubMed ID: 32641712
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ACC and IPL networks in the perception of the faces of parents during selective tasks.
    Zhai H; Yu Y; Zhang W; Chen G; Jia F
    Brain Imaging Behav; 2016 Dec; 10(4):1172-1183. PubMed ID: 26613720
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inhibit, switch, and update: A within-subject fMRI investigation of executive control.
    Lemire-Rodger S; Lam J; Viviano JD; Stevens WD; Spreng RN; Turner GR
    Neuropsychologia; 2019 Sep; 132():107134. PubMed ID: 31299188
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Auditory Spatial Coding Flexibly Recruits Anterior, but Not Posterior, Visuotopic Parietal Cortex.
    Michalka SW; Rosen ML; Kong L; Shinn-Cunningham BG; Somers DC
    Cereb Cortex; 2016 Mar; 26(3):1302-1308. PubMed ID: 26656996
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Neural correlates of hot and cold executive functions in polysubstance addiction: association between neuropsychological performance and resting brain metabolism as measured by positron emission tomography.
    Moreno-López L; Stamatakis EA; Fernández-Serrano MJ; Gómez-Río M; Rodríguez-Fernández A; Pérez-García M; Verdejo-García A
    Psychiatry Res; 2012; 203(2-3):214-21. PubMed ID: 22959812
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Frontal cortex differentiates between free and imposed target selection in multiple-target search.
    Ort E; Fahrenfort JJ; Reeder R; Pollmann S; Olivers CNL
    Neuroimage; 2019 Nov; 202():116133. PubMed ID: 31472251
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Distinct Frontoparietal Networks Underlying Attentional Effort and Cognitive Control.
    Berry AS; Sarter M; Lustig C
    J Cogn Neurosci; 2017 Jul; 29(7):1212-1225. PubMed ID: 28253080
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The scope and control of attention: Sources of variance in working memory capacity.
    Chow M; Conway AR
    Mem Cognit; 2015 Apr; 43(3):325-39. PubMed ID: 25604642
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Different Roles of COMT and HTR2A Genotypes in Working Memory Subprocesses.
    Kondo HM; Nomura M; Kashino M
    PLoS One; 2015; 10(5):e0126511. PubMed ID: 25974269
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A neural mechanism of cognitive control for resolving conflict between abstract task rules.
    Sheu YS; Courtney SM
    Cortex; 2016 Dec; 85():13-24. PubMed ID: 27771559
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood.
    Klingberg T; Forssberg H; Westerberg H
    J Cogn Neurosci; 2002 Jan; 14(1):1-10. PubMed ID: 11798382
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Neural signatures of stimulus features in visual working memory--a spatiotemporal approach.
    Morgan HM; Jackson MC; Klein C; Mohr H; Shapiro KL; Linden DE
    Cereb Cortex; 2010 Jan; 20(1):187-97. PubMed ID: 19429863
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Attentional control during the transient updating of cue information.
    Pessoa L; Rossi A; Japee S; Desimone R; Ungerleider LG
    Brain Res; 2009 Jan; 1247():149-58. PubMed ID: 18992228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.