These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
617 related articles for article (PubMed ID: 31476455)
1. Accuracy of Radiomics-Based Feature Analysis on Multiparametric Magnetic Resonance Images for Noninvasive Meningioma Grading. Laukamp KR; Shakirin G; Baeßler B; Thiele F; Zopfs D; Große Hokamp N; Timmer M; Kabbasch C; Perkuhn M; Borggrefe J World Neurosurg; 2019 Dec; 132():e366-e390. PubMed ID: 31476455 [TBL] [Abstract][Full Text] [Related]
2. Machine learning-based radiomics analysis in predicting the meningioma grade using multiparametric MRI. Hu J; Zhao Y; Li M; Liu J; Wang F; Weng Q; Wang X; Cao D Eur J Radiol; 2020 Oct; 131():109251. PubMed ID: 32916409 [TBL] [Abstract][Full Text] [Related]
3. Meningiomas: Preoperative predictive histopathological grading based on radiomics of MRI. Han Y; Wang T; Wu P; Zhang H; Chen H; Yang C Magn Reson Imaging; 2021 Apr; 77():36-43. PubMed ID: 33220449 [TBL] [Abstract][Full Text] [Related]
4. Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging. Park YW; Oh J; You SC; Han K; Ahn SS; Choi YS; Chang JH; Kim SH; Lee SK Eur Radiol; 2019 Aug; 29(8):4068-4076. PubMed ID: 30443758 [TBL] [Abstract][Full Text] [Related]
5. Comparison of machine learning classifiers for differentiation of grade 1 from higher gradings in meningioma: A multicenter radiomics study. Hamerla G; Meyer HJ; Schob S; Ginat DT; Altman A; Lim T; Gihr GA; Horvath-Rizea D; Hoffmann KT; Surov A Magn Reson Imaging; 2019 Nov; 63():244-249. PubMed ID: 31425811 [TBL] [Abstract][Full Text] [Related]
6. Grading meningiomas utilizing multiparametric MRI with inclusion of susceptibility weighted imaging and quantitative susceptibility mapping. Zhang S; Chiang GC; Knapp JM; Zecca CM; He D; Ramakrishna R; Magge RS; Pisapia DJ; Fine HA; Tsiouris AJ; Zhao Y; Heier LA; Wang Y; Kovanlikaya I J Neuroradiol; 2020 Jun; 47(4):272-277. PubMed ID: 31136748 [TBL] [Abstract][Full Text] [Related]
7. Radiomics analysis of multiparametric MRI for the preoperative evaluation of pathological grade in bladder cancer tumors. Wang H; Hu D; Yao H; Chen M; Li S; Chen H; Luo J; Feng Y; Guo Y Eur Radiol; 2019 Nov; 29(11):6182-6190. PubMed ID: 31016445 [TBL] [Abstract][Full Text] [Related]
8. Automated Meningioma Segmentation in Multiparametric MRI : Comparable Effectiveness of a Deep Learning Model and Manual Segmentation. Laukamp KR; Pennig L; Thiele F; Reimer R; Görtz L; Shakirin G; Zopfs D; Timmer M; Perkuhn M; Borggrefe J Clin Neuroradiol; 2021 Jun; 31(2):357-366. PubMed ID: 32060575 [TBL] [Abstract][Full Text] [Related]
9. Multiparameter MRI-based radiomics nomogram for preoperative prediction of brain invasion in atypical meningioma:a multicentre study. Yu J; Kong X; Xie D; Zheng F; Wang C; Shi D; He C; Liang X; Xu H; Li S; Chen X BMC Med Imaging; 2024 Jun; 24(1):134. PubMed ID: 38840054 [TBL] [Abstract][Full Text] [Related]
10. Deep learning-based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study. Chen H; Li S; Zhang Y; Liu L; Lv X; Yi Y; Ruan G; Ke C; Feng Y Eur Radiol; 2022 Oct; 32(10):7248-7259. PubMed ID: 35420299 [TBL] [Abstract][Full Text] [Related]
11. Accuracy of deep learning to differentiate the histopathological grading of meningiomas on MR images: A preliminary study. Banzato T; Causin F; Della Puppa A; Cester G; Mazzai L; Zotti A J Magn Reson Imaging; 2019 Oct; 50(4):1152-1159. PubMed ID: 30896065 [TBL] [Abstract][Full Text] [Related]
13. Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI. Laukamp KR; Thiele F; Shakirin G; Zopfs D; Faymonville A; Timmer M; Maintz D; Perkuhn M; Borggrefe J Eur Radiol; 2019 Jan; 29(1):124-132. PubMed ID: 29943184 [TBL] [Abstract][Full Text] [Related]
14. Development of a Clinicopathological-Radiomics Model for Predicting Progression and Recurrence in Meningioma Patients. He M; Wang X; Huang C; Peng X; Li N; Li F; Dong H; Wang Z; Zhao L; Wu F; Zhang M; Guan X; Xu X Acad Radiol; 2024 May; 31(5):2061-2073. PubMed ID: 37993304 [TBL] [Abstract][Full Text] [Related]
15. Multi-parametric MRI-based machine learning model for prediction of WHO grading in patients with meningiomas. Zhao Z; Nie C; Zhao L; Xiao D; Zheng J; Zhang H; Yan P; Jiang X; Zhao H Eur Radiol; 2024 Apr; 34(4):2468-2479. PubMed ID: 37812296 [TBL] [Abstract][Full Text] [Related]
16. MRI- and DWI-Based Radiomics Features for Preoperatively Predicting Meningioma Sinus Invasion. Gui Y; Chen F; Ren J; Wang L; Chen K; Zhang J J Imaging Inform Med; 2024 Jun; 37(3):1054-1066. PubMed ID: 38351221 [TBL] [Abstract][Full Text] [Related]
17. Evaluation parameters between intra-voxel incoherent motion and diffusion-weighted imaging in grading and differentiating histological subtypes of meningioma: A prospective pilot study. Yiping L; Kawai S; Jianbo W; Li L; Daoying G; Bo Y J Neurol Sci; 2017 Jan; 372():60-69. PubMed ID: 28017250 [TBL] [Abstract][Full Text] [Related]
18. Radiomics approach for prediction of recurrence in skull base meningiomas. Zhang Y; Chen JH; Chen TY; Lim SW; Wu TC; Kuo YT; Ko CC; Su MY Neuroradiology; 2019 Dec; 61(12):1355-1364. PubMed ID: 31324948 [TBL] [Abstract][Full Text] [Related]
19. Differentiation Researches on the Meningioma Subtypes by Radiomics from Contrast-Enhanced Magnetic Resonance Imaging: A Preliminary Study. Niu L; Zhou X; Duan C; Zhao J; Sui Q; Liu X; Zhang X World Neurosurg; 2019 Jun; 126():e646-e652. PubMed ID: 30831287 [TBL] [Abstract][Full Text] [Related]
20. Preoperative Prediction of Solitary Fibrous Tumor/Hemangiopericytoma and Angiomatous Meningioma Using Magnetic Resonance Imaging Texture Analysis. Kanazawa T; Minami Y; Jinzaki M; Toda M; Yoshida K; Sasaki H World Neurosurg; 2018 Dec; 120():e1208-e1216. PubMed ID: 30240864 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]