These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31476683)

  • 1. Evaluation of information transfer and data transfer models of rain-gauge network design based on information entropy.
    Wang W; Wang D; Singh VP; Wang Y; Wu J; Zhang J; Liu J; Zou Y; He R; Meng D
    Environ Res; 2019 Nov; 178():108686. PubMed ID: 31476683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A kriging and entropy-based approach to raingauge network design.
    Xu P; Wang D; Singh VP; Wang Y; Wu J; Wang L; Zou X; Liu J; Zou Y; He R
    Environ Res; 2018 Feb; 161():61-75. PubMed ID: 29101830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing a dual entropy-transinformation criterion for hydrometric network optimization based on information theory and copulas.
    Li H; Wang D; Singh VP; Wang Y; Wu J; Wu J; He R; Zou Y; Liu J; Zhang J
    Environ Res; 2020 Jan; 180():108813. PubMed ID: 31627158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of rain gauge density over the accuracy of rainfall: a case study over Bangalore, India.
    Mishra AK
    Springerplus; 2013 Dec; 2(1):311. PubMed ID: 23888280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling Hydrologic Processes in the Mekong River Basin Using a Distributed Model Driven by Satellite Precipitation and Rain Gauge Observations.
    Wang W; Lu H; Yang D; Sothea K; Jiao Y; Gao B; Peng X; Pang Z
    PLoS One; 2016; 11(3):e0152229. PubMed ID: 27010692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New optimization methods for designing rain stations network using new neural network, election, and whale optimization algorithms by combining the Kriging method.
    Safavi M; Siuki AK; Hashemi SR
    Environ Monit Assess; 2020 Dec; 193(1):4. PubMed ID: 33301069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal extension of the rain gauge monitoring network of the Apulian Regional Consortium for Crop Protection.
    Barca E; Passarella G; Uricchio V
    Environ Monit Assess; 2008 Oct; 145(1-3):375-86. PubMed ID: 18034362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geostatistical mapping of precipitation: implications for rain gauge network design.
    Nour MH; Smit DW; Gamal El-Din M
    Water Sci Technol; 2006; 53(10):101-10. PubMed ID: 16838694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of rain gauge and radar data as input to an urban rainfall-runoff model.
    Quirmbach M; Schultz GA
    Water Sci Technol; 2002; 45(2):27-33. PubMed ID: 11888180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suitability of different precipitation data sources for hydrological analysis: a study from Western Ghats, India.
    Reddy BSN; V SP; Pramada SK
    Environ Monit Assess; 2022 Jan; 194(2):75. PubMed ID: 35000017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of node importance in rain gauge network: influence of temporal resolution and rain gauge density.
    Tiwari S; Jha SK; Singh A
    Sci Rep; 2020 Jun; 10(1):9761. PubMed ID: 32555387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Commercial microwave links instead of rain gauges: fiction or reality?
    Fencl M; Rieckermann J; Sýkora P; Stránský D; Bareš V
    Water Sci Technol; 2015; 71(1):31-7. PubMed ID: 25607666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rainfall time series disaggregation in mountainous regions using hybrid wavelet-artificial intelligence methods.
    Nourani V; Farboudfam N
    Environ Res; 2019 Jan; 168():306-318. PubMed ID: 30366282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of uncertainty of satellite and reanalysis precipitation products and their impact on hydrological simulation.
    Miao Y; Liu R; Wang Q; Jiao L; Wang Y; Li L; Cao L
    Environ Sci Pollut Res Int; 2021 Nov; 28(43):60935-60953. PubMed ID: 34165745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of autonomous transmission line-type electromagnetic sensors for classification of dry and wet periods at sub-hourly time intervals.
    Mikešová V; Fencl M; Dohnal M; Bareš V
    Environ Monit Assess; 2018 Oct; 190(11):684. PubMed ID: 30374833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tipping bucket mechanical errors and their influence on rainfall statistics and extremes.
    La BP; Lanza LG; Stagi L
    Water Sci Technol; 2002; 45(2):1-10. PubMed ID: 11888170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncertainty in watershed response predictions induced by spatial variability of precipitation.
    Chang CL; Lo SL; Chen MY
    Environ Monit Assess; 2007 Apr; 127(1-3):147-53. PubMed ID: 17171291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of spatial interpolation methods for annual and seasonal rainfall in two hotspots of biodiversity in South America.
    CerÓn WL; Andreoli RV; Kayano MT; Canchala T; Carvajal-Escobar Y; Souza RAF
    An Acad Bras Cienc; 2021; 93(1):e20190674. PubMed ID: 33470294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An enquiry into rainfall data measurement and processing for model use in urban hydrology.
    Einfalt T; Arnbjerg-Nielsen K; Spies S
    Water Sci Technol; 2002; 45(2):147-52. PubMed ID: 11888178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. To what extent does variability of historical rainfall series influence extreme event statistics of sewer system surcharge and overflows?
    Schaarup-Jensen K; Rasmussen MR; Thorndahl S
    Water Sci Technol; 2009; 60(1):87-95. PubMed ID: 19587406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.