These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31476688)

  • 1. Macroporous bacterial cellulose grafted by oligopeptides induces biomimetic mineralization via interfacial wettability.
    Sun B; Wei F; Li W; Xu X; Zhang H; Liu M; Lin J; Ma B; Chen C; Sun D
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110457. PubMed ID: 31476688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of Robust, Shape Recoverable, Macroporous Bacterial Cellulose Scaffolds for Cartilage Tissue Engineering.
    Xun X; Li Y; Zhu X; Zhang Q; Lu Y; Yang Z; Wan Y; Yao F; Deng X; Luo H
    Macromol Biosci; 2021 Nov; 21(11):e2100167. PubMed ID: 34494372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Present status and applications of bacterial cellulose-based materials for skin tissue repair.
    Fu L; Zhang J; Yang G
    Carbohydr Polym; 2013 Feb; 92(2):1432-42. PubMed ID: 23399174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization.
    Joshi MK; Tiwari AP; Pant HR; Shrestha BK; Kim HJ; Park CH; Kim CS
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19672-83. PubMed ID: 26295953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional cellulose sponge: Fabrication, characterization, biomimetic mineralization, and in vitro cell infiltration.
    Joshi MK; Pant HR; Tiwari AP; Maharjan B; Liao N; Kim HJ; Park CH; Kim CS
    Carbohydr Polym; 2016 Jan; 136():154-62. PubMed ID: 26572341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gelatin-bacterial cellulose composite sponges thermally cross-linked with glucose for tissue engineering applications.
    Kirdponpattara S; Phisalaphong M; Kongruang S
    Carbohydr Polym; 2017 Dec; 177():361-368. PubMed ID: 28962780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial cellulose sponges obtained with green cross-linkers for tissue engineering.
    Frone AN; Panaitescu DM; Nicolae CA; Gabor AR; Trusca R; Casarica A; Stanescu PO; Baciu DD; Salageanu A
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110740. PubMed ID: 32204048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillating Magnetic Field Regulates Cell Adherence and Endothelialization Based on Magnetic Nanoparticle-Modified Bacterial Cellulose.
    Zhang L; Wei F; Bai Q; Song D; Zheng Z; Wang Y; Liu X; Abdulrahman AA; Bian Y; Xu X; Chen C; Zhang H; Sun D
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52467-52478. PubMed ID: 33170636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose.
    de Oliveira Barud HG; da Silva RR; da Silva Barud H; Tercjak A; Gutierrez J; Lustri WR; de Oliveira OB; Ribeiro SJL
    Carbohydr Polym; 2016 Nov; 153():406-420. PubMed ID: 27561512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creation of macropores in three-dimensional bacterial cellulose scaffold for potential cancer cell culture.
    Xiong G; Luo H; Zhu Y; Raman S; Wan Y
    Carbohydr Polym; 2014 Dec; 114():553-557. PubMed ID: 25263926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Latest Advances on Bacterial Cellulose-Based Materials for Wound Healing, Delivery Systems, and Tissue Engineering.
    Carvalho T; Guedes G; Sousa FL; Freire CSR; Santos HA
    Biotechnol J; 2019 Dec; 14(12):e1900059. PubMed ID: 31468684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas assisted in situ biomimetic mineralization of bacterial cellulose/calcium carbonate bio composites by bacterial.
    Sun B; Lin J; Wang T; Liu M; Yang L; Ma B; Chaudhary JP; Chen C; Sun D
    Int J Biol Macromol; 2021 Jul; 182():1690-1696. PubMed ID: 34058205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of RGD grafting on biocompatibility of oxidized cellulose scaffold.
    Mahmoodi M; Hossainalipour SM; Naimi-Jamal MR; Samani S; Samadikuchaksaraei A; Rezaie HR
    Artif Cells Nanomed Biotechnol; 2013 Dec; 41(6):421-7. PubMed ID: 23330635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and biocompatibility evaluation of biodegradable bacterial cellulose as a novel peripheral nerve scaffold.
    Hou Y; Wang X; Yang J; Zhu R; Zhang Z; Li Y
    J Biomed Mater Res A; 2018 May; 106(5):1288-1298. PubMed ID: 29316233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds.
    Park S; Park J; Jo I; Cho SP; Sung D; Ryu S; Park M; Min KA; Kim J; Hong S; Hong BH; Kim BS
    Biomaterials; 2015 Jul; 58():93-102. PubMed ID: 25941786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and structural characterization of surface modified microporous bacterial cellulose scaffolds: A potential material for skin regeneration applications in vitro and in vivo.
    Khan S; Ul-Islam M; Ikram M; Islam SU; Ullah MW; Israr M; Jang JH; Yoon S; Park JK
    Int J Biol Macromol; 2018 Oct; 117():1200-1210. PubMed ID: 29894790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication strategies and biomedical applications of three-dimensional bacterial cellulose-based scaffolds: A review.
    Khan S; Ul-Islam M; Ullah MW; Zhu Y; Narayanan KB; Han SS; Park JK
    Int J Biol Macromol; 2022 Jun; 209(Pt A):9-30. PubMed ID: 35381280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved Cell Viability and Biocompatibility of Bacterial Cellulose through in Situ Carboxymethylation.
    Zhou D; Sun Y; Bao Z; Liu W; Xian M; Nian R; Xu F
    Macromol Biosci; 2019 May; 19(5):e1800395. PubMed ID: 30721574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial Cellulose-Based Materials: A Perspective on Cardiovascular Tissue Engineering Applications.
    Fooladi S; Nematollahi MH; Rabiee N; Iravani S
    ACS Biomater Sci Eng; 2023 Jun; 9(6):2949-2969. PubMed ID: 37146213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overview of bacterial cellulose composites: a multipurpose advanced material.
    Shah N; Ul-Islam M; Khattak WA; Park JK
    Carbohydr Polym; 2013 Nov; 98(2):1585-98. PubMed ID: 24053844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.