BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 31477008)

  • 1. Mitochondrial genomic variation drives differential nuclear gene expression in discrete regions of Drosophila gene and protein interaction networks.
    Mossman JA; Biancani LM; Rand DM
    BMC Genomics; 2019 Sep; 20(1):691. PubMed ID: 31477008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial-Nuclear Interactions Mediate Sex-Specific Transcriptional Profiles in Drosophila.
    Mossman JA; Tross JG; Li N; Wu Z; Rand DM
    Genetics; 2016 Oct; 204(2):613-630. PubMed ID: 27558138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitonuclear Interactions Mediate Transcriptional Responses to Hypoxia in Drosophila.
    Mossman JA; Tross JG; Jourjine NA; Li N; Wu Z; Rand DM
    Mol Biol Evol; 2017 Feb; 34(2):447-466. PubMed ID: 28110272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitonuclear epistasis, genotype-by-environment interactions, and personalized genomics of complex traits in Drosophila.
    Rand DM; Mossman JA; Zhu L; Biancani LM; Ge JY
    IUBMB Life; 2018 Dec; 70(12):1275-1288. PubMed ID: 30394643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear-mitochondrial epistasis and drosophila aging: introgression of Drosophila simulans mtDNA modifies longevity in D. melanogaster nuclear backgrounds.
    Rand DM; Fry A; Sheldahl L
    Genetics; 2006 Jan; 172(1):329-41. PubMed ID: 16219776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitonuclear Epistasis for Development Time and Its Modification by Diet in Drosophila.
    Mossman JA; Biancani LM; Zhu CT; Rand DM
    Genetics; 2016 May; 203(1):463-84. PubMed ID: 26966258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial DNA Fitness Depends on Nuclear Genetic Background in
    Mossman JA; Ge JY; Navarro F; Rand DM
    G3 (Bethesda); 2019 Apr; 9(4):1175-1188. PubMed ID: 30745378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial haplotypes affect metabolic phenotypes in the Drosophila Genetic Reference Panel.
    Bevers RPJ; Litovchenko M; Kapopoulou A; Braman VS; Robinson MR; Auwerx J; Hollis B; Deplancke B
    Nat Metab; 2019 Dec; 1(12):1226-1242. PubMed ID: 32694676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondria as environments for the nuclear genome in Drosophila: mitonuclear G×G×E.
    Rand DM; Mossman JA; Spierer AN; Santiago JA
    J Hered; 2022 Feb; 113(1):37-47. PubMed ID: 34964900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. G×G×E for lifespan in Drosophila: mitochondrial, nuclear, and dietary interactions that modify longevity.
    Zhu CT; Ingelmo P; Rand DM
    PLoS Genet; 2014; 10(5):e1004354. PubMed ID: 24832080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competition between mitochondrial haplotypes in distinct nuclear genetic environments: Drosophila pseudoobscura vs. D. persimilis.
    Hutter CM; Rand DM
    Genetics; 1995 Jun; 140(2):537-48. PubMed ID: 7498735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential fitness of mitochondrial DNA in perturbation cage studies correlates with global abundance and population history in Drosophila simulans.
    Ballard JW; James AC
    Proc Biol Sci; 2004 Jun; 271(1544):1197-201. PubMed ID: 15306370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single Nucleotides in the mtDNA Sequence Modify Mitochondrial Molecular Function and Are Associated with Sex-Specific Effects on Fertility and Aging.
    Camus MF; Wolf JB; Morrow EH; Dowling DK
    Curr Biol; 2015 Oct; 25(20):2717-22. PubMed ID: 26455309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mito-nuclear interactions as drivers of gene movement on and off the X-chromosome.
    Rogell B; Dean R; Lemos B; Dowling DK
    BMC Genomics; 2014 May; 15(1):330. PubMed ID: 24885291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple hybridization events between Drosophila simulans and Drosophila mauritiana are supported by mtDNA introgression.
    Nunes MD; Wengel PO; Kreissl M; Schlötterer C
    Mol Ecol; 2010 Nov; 19(21):4695-707. PubMed ID: 20958812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pleiotropic effects of a mitochondrial-nuclear incompatibility depend upon the accelerating effect of temperature in Drosophila.
    Hoekstra LA; Siddiq MA; Montooth KL
    Genetics; 2013 Nov; 195(3):1129-39. PubMed ID: 24026098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sex-specific effects of sympatric mitonuclear variation on fitness in Drosophila subobscura.
    Jelić M; Arnqvist G; Novičić ZK; Kenig B; Tanasković M; Anđelković M; Stamenković-Radak M
    BMC Evol Biol; 2015 Jul; 15():135. PubMed ID: 26156582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Within-population genetic effects of mtDNA on metabolic rate in Drosophila subobscura.
    Kurbalija Novičić Z; Immonen E; Jelić M; AnÐelković M; Stamenković-Radak M; Arnqvist G
    J Evol Biol; 2015 Feb; 28(2):338-46. PubMed ID: 25454557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative genomics of mitochondrial DNA in Drosophila simulans.
    Ballard JW
    J Mol Evol; 2000 Jul; 51(1):64-75. PubMed ID: 10903373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cytoplasmic suppressor of a nuclear mutation affecting mitochondrial functions in Drosophila.
    Chen S; Oliveira MT; Sanz A; Kemppainen E; Fukuoh A; Schlicht B; Kaguni LS; Jacobs HT
    Genetics; 2012 Oct; 192(2):483-93. PubMed ID: 22851652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.