These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 31477014)
1. Integrating genome-wide co-association and gene expression to identify putative regulators and predictors of feed efficiency in pigs. Ramayo-Caldas Y; Mármol-Sánchez E; Ballester M; Sánchez JP; González-Prendes R; Amills M; Quintanilla R Genet Sel Evol; 2019 Sep; 51(1):48. PubMed ID: 31477014 [TBL] [Abstract][Full Text] [Related]
2. Gene networks for three feed efficiency criteria reveal shared and specific biological processes. Taussat S; Boussaha M; Ramayo-Caldas Y; Martin P; Venot E; Cantalapiedra-Hijar G; Hozé C; Fritz S; Renand G Genet Sel Evol; 2020 Nov; 52(1):67. PubMed ID: 33167870 [TBL] [Abstract][Full Text] [Related]
3. Identification of genomic regions affecting production traits in pigs divergently selected for feed efficiency. Delpuech E; Aliakbari A; Labrune Y; Fève K; Billon Y; Gilbert H; Riquet J Genet Sel Evol; 2021 Jun; 53(1):49. PubMed ID: 34126920 [TBL] [Abstract][Full Text] [Related]
4. Combination analysis of genome-wide association and transcriptome sequencing of residual feed intake in quality chickens. Xu Z; Ji C; Zhang Y; Zhang Z; Nie Q; Xu J; Zhang D; Zhang X BMC Genomics; 2016 Aug; 17():594. PubMed ID: 27506765 [TBL] [Abstract][Full Text] [Related]
5. Genomic dissection and prediction of feed intake and residual feed intake traits using a longitudinal model in F2 chickens. Emamgholi Begli H; Vaez Torshizi R; Masoudi AA; Ehsani A; Jensen J Animal; 2018 Sep; 12(9):1792-1798. PubMed ID: 29268803 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide association studies identified loci associated with both feed conversion ratio and residual feed intake in Yorkshire pigs. Wang K; Wang S; Ji X; Chen D; Shen Q; Yu Y; Xiao W; Wu P; Yuan J; Gu Y; Tang G Genome; 2022 Jul; 65(7):405-412. PubMed ID: 35594567 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide association analysis and functional annotation of positional candidate genes for feed conversion efficiency and growth rate in pigs. Horodyska J; Hamill RM; Varley PF; Reyer H; Wimmers K PLoS One; 2017; 12(6):e0173482. PubMed ID: 28604785 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide association and systems genetic analyses of residual feed intake, daily feed consumption, backfat and weight gain in pigs. Do DN; Ostersen T; Strathe AB; Mark T; Jensen J; Kadarmideen HN BMC Genet; 2014 Feb; 15():27. PubMed ID: 24533460 [TBL] [Abstract][Full Text] [Related]
9. Investigation of muscle transcriptomes using gradient boosting machine learning identifies molecular predictors of feed efficiency in growing pigs. Messad F; Louveau I; Koffi B; Gilbert H; Gondret F BMC Genomics; 2019 Aug; 20(1):659. PubMed ID: 31419934 [TBL] [Abstract][Full Text] [Related]
10. Development and validation of a small SNP panel for feed efficiency in beef cattle. Abo-Ismail MK; Lansink N; Akanno E; Karisa BK; Crowley JJ; Moore SS; Bork E; Stothard P; Basarab JA; Plastow GS J Anim Sci; 2018 Mar; 96(2):375-397. PubMed ID: 29390120 [TBL] [Abstract][Full Text] [Related]
11. Machine learning applied to transcriptomic data to identify genes associated with feed efficiency in pigs. Piles M; Fernandez-Lozano C; Velasco-Galilea M; González-Rodríguez O; Sánchez JP; Torrallardona D; Ballester M; Quintanilla R Genet Sel Evol; 2019 Mar; 51(1):10. PubMed ID: 30866799 [TBL] [Abstract][Full Text] [Related]
12. Genome-Wide Epistatic Interaction Networks Affecting Feed Efficiency in Duroc and Landrace Pigs. Banerjee P; Carmelo VAO; Kadarmideen HN Front Genet; 2020; 11():121. PubMed ID: 32184802 [TBL] [Abstract][Full Text] [Related]
13. Single nucleotide polymorphisms for feed efficiency and performance in crossbred beef cattle. Abo-Ismail MK; Vander Voort G; Squires JJ; Swanson KC; Mandell IB; Liao X; Stothard P; Moore S; Plastow G; Miller SP BMC Genet; 2014 Jan; 15():14. PubMed ID: 24476087 [TBL] [Abstract][Full Text] [Related]
14. Post-weaning blood transcriptomic differences between Yorkshire pigs divergently selected for residual feed intake. Liu H; Nguyen YT; Nettleton D; Dekkers JC; Tuggle CK BMC Genomics; 2016 Jan; 17():73. PubMed ID: 26801403 [TBL] [Abstract][Full Text] [Related]
15. Feed intake, average daily gain, feed efficiency, and real-time ultrasound traits in Duroc pigs: II. Genomewide association. Jiao S; Maltecca C; Gray KA; Cassady JP J Anim Sci; 2014 Jul; 92(7):2846-60. PubMed ID: 24962532 [TBL] [Abstract][Full Text] [Related]
16. A transcriptome multi-tissue analysis identifies biological pathways and genes associated with variations in feed efficiency of growing pigs. Gondret F; Vincent A; Houée-Bigot M; Siegel A; Lagarrigue S; Causeur D; Gilbert H; Louveau I BMC Genomics; 2017 Mar; 18(1):244. PubMed ID: 28327084 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide association studies for feed intake and efficiency in two laying periods of chickens. Yuan J; Wang K; Yi G; Ma M; Dou T; Sun C; Qu LJ; Shen M; Qu L; Yang N Genet Sel Evol; 2015 Oct; 47():82. PubMed ID: 26475174 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide association study and accuracy of genomic prediction for teat number in Duroc pigs using genotyping-by-sequencing. Tan C; Wu Z; Ren J; Huang Z; Liu D; He X; Prakapenka D; Zhang R; Li N; Da Y; Hu X Genet Sel Evol; 2017 Mar; 49(1):35. PubMed ID: 28356075 [TBL] [Abstract][Full Text] [Related]
19. Identification of Gene Networks for Residual Feed Intake in Angus Cattle Using Genomic Prediction and RNA-seq. Weber KL; Welly BT; Van Eenennaam AL; Young AE; Porto-Neto LR; Reverter A; Rincon G PLoS One; 2016; 11(3):e0152274. PubMed ID: 27019286 [TBL] [Abstract][Full Text] [Related]
20. gBLUP-GWAS identifies candidate genes, signaling pathways, and putative functional polymorphisms for age at puberty in gilts. Wijesena HR; Nonneman DJ; Snelling WM; Rohrer GA; Keel BN; Lents CA J Anim Sci; 2023 Jan; 101():. PubMed ID: 36848325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]