BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 3147722)

  • 1. Molecular organization of the intestinal brush border.
    Maroux S; Coudrier E; Feracci H; Gorvel JP; Louvard D
    Biochimie; 1988 Sep; 70(9):1297-306. PubMed ID: 3147722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of microtubules in polarized delivery of apical membrane proteins to the brush border of the intestinal epithelium.
    Achler C; Filmer D; Merte C; Drenckhahn D
    J Cell Biol; 1989 Jul; 109(1):179-89. PubMed ID: 2568363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for the transit of aminopeptidase N through the basolateral membrane before it reaches the brush border of enterocytes.
    Massey D; Feracci H; Gorvel JP; Rigal A; SouliƩ JM; Maroux S
    J Membr Biol; 1987; 96(1):19-25. PubMed ID: 2884323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoskeletal proteins of the rat kidney proximal tubule brush border.
    Rodman JS; Mooseker M; Farquhar MG
    Eur J Cell Biol; 1986 Dec; 42(2):319-27. PubMed ID: 3545840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo effect of tunicamycin on the expression of rat small intestinal brush border membrane glycoproteins and glycoenzymes.
    Miura S; Erickson RH; Song IS; Kim YS
    Biochem Pharmacol; 1988 Nov; 37(21):4081-8. PubMed ID: 2903742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembly of the intestinal brush border: appearance and redistribution of microvillar core proteins in developing chick enterocytes.
    Shibayama T; Carboni JM; Mooseker MS
    J Cell Biol; 1987 Jul; 105(1):335-44. PubMed ID: 2956268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dual role of annexin II in targeting of brush border proteins and in intestinal cell polarity.
    Hein Z; Schmidt S; Zimmer KP; Naim HY
    Differentiation; 2011 Apr; 81(4):243-52. PubMed ID: 21330046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of brush border cytoskeletal proteins in gastric oxynticopeptic cells from the bullfrog Rana catesbeiana.
    Hagen SJ; Yanaka A; Jansons R
    Cell Tissue Res; 1994 Feb; 275(2):255-67. PubMed ID: 8111837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression and glycosylation of the filamentous brush border glycocalyx (FBBG) during rabbit enterocyte differentiation along the crypt-villus axis.
    Maury J; Bernadac A; Rigal A; Maroux S
    J Cell Sci; 1995 Jul; 108 ( Pt 7)():2705-13. PubMed ID: 7593311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aminopeptidases and proteolipids of intestinal brush border.
    Maroux S; Feracci H; Gorvel JP; Benajiba A
    Ciba Found Symp; 1983; 95():34-49. PubMed ID: 6342998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subcellular fractionation and subcellular localization of aminopeptidase N in the rabbit enterocytes.
    Moktari S; Feracci H; Gorvel JP; Mishal Z; Rigal A; Maroux S
    J Membr Biol; 1986; 89(1):53-63. PubMed ID: 2870193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular model of the microvillar cytoskeleton and organization of the brush border.
    Brown JW; McKnight CJ
    PLoS One; 2010 Feb; 5(2):e9406. PubMed ID: 20195380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for selective transport of two brush-border glycoproteins from endoplasmic reticulum to Golgi complex in rabbit enterocytes.
    Gorvel JP; Massey D; Rigal A; Maroux S
    Biol Cell; 1986; 56(3):251-4. PubMed ID: 2874853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myosin 5b is required for proper localization of the intermicrovillar adhesion complex in the intestinal brush border.
    Dooley SA; Engevik KA; Digrazia J; Stubler R; Kaji I; Krystofiak E; Engevik AC
    Am J Physiol Gastrointest Liver Physiol; 2022 Nov; 323(5):G501-G510. PubMed ID: 36218265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intestinal uptake of dipeptides and beta-lactam antibiotics. I. The intestinal uptake system for dipeptides and beta-lactam antibiotics is not part of a brush border membrane peptidase.
    Kramer W; Dechent C; Girbig F; Gutjahr U; Neubauer H
    Biochim Biophys Acta; 1990 Nov; 1030(1):41-9. PubMed ID: 1979919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tropomyosin distinguishes between the two actin-binding sites of villin and affects actin-binding properties of other brush border proteins.
    Burgess DR; Broschat KO; Hayden JM
    J Cell Biol; 1987 Jan; 104(1):29-40. PubMed ID: 3793760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow cytometry, a very useful technique for the characterization of intestinal membrane vesicles.
    Gorvel JP; Mishal Z
    Biol Cell; 1986; 58(2):157-67. PubMed ID: 2950957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organization, chemistry, and assembly of the cytoskeletal apparatus of the intestinal brush border.
    Mooseker MS
    Annu Rev Cell Biol; 1985; 1():209-41. PubMed ID: 3916317
    [No Abstract]   [Full Text] [Related]  

  • 19. Biosynthesis and intracellular pool of aminopeptidase N in rabbit enterocytes.
    Feracci H; Rigal A; Maroux S
    J Membr Biol; 1985; 83(1-2):139-46. PubMed ID: 2860249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microinjection of villin into cultured cells induces rapid and long-lasting changes in cell morphology but does not inhibit cytokinesis, cell motility, or membrane ruffling.
    Franck Z; Footer M; Bretscher A
    J Cell Biol; 1990 Dec; 111(6 Pt 1):2475-85. PubMed ID: 2277069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.