These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31477697)

  • 1. Rate and selectivity hysteresis during the carbon monoxide hydrogenation over promoted Co/MnOx catalysts.
    Xiang Y; Kovarik L; Kruse N
    Nat Commun; 2019 Sep; 10(1):3953. PubMed ID: 31477697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cobalt Carbide Nanocatalysts for Efficient Syngas Conversion to Value-Added Chemicals with High Selectivity.
    Lin T; Yu F; An Y; Qin T; Li L; Gong K; Zhong L; Sun Y
    Acc Chem Res; 2021 Apr; 54(8):1961-1971. PubMed ID: 33599477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the catalytic CO hydrogenation to straight- and long-chain aldehydes/alcohols and olefins/paraffins.
    Xiang Y; Kruse N
    Nat Commun; 2016 Oct; 7():13058. PubMed ID: 27708269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of Co/Co
    Zhao Z; Li Y; Zhu H; Lyu Y; Ding Y
    Chem Commun (Camb); 2023 Mar; 59(26):3827-3837. PubMed ID: 36883229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in Co
    Yu F; Lin T; An Y; Gong K; Wang X; Sun Y; Zhong L
    Chem Commun (Camb); 2022 Aug; 58(70):9712-9727. PubMed ID: 35972448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray absorption spectroscopy of Mn/Co/TiO2 Fischer-Tropsch catalysts: relationships between preparation method, molecular structure, and catalyst performance.
    Morales F; Grandjean D; Mens A; de Groot FM; Weckhuysen BM
    J Phys Chem B; 2006 May; 110(17):8626-39. PubMed ID: 16640417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizing Phase Evolution of Co
    Hong X; Zhao Q; Chen Y; Yu Z; Zhou M; Chen Y; Luo W; Wang C; Ta N; Li H; Ye R; Zu X; Liu W; Liu J
    Adv Mater; 2024 Jun; ():e2404046. PubMed ID: 38842820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-Based Catalysts Derived from Layered-Double-Hydroxide Nanosheets for the Photothermal Production of Light Olefins.
    Li Z; Liu J; Zhao Y; Waterhouse GIN; Chen G; Shi R; Zhang X; Liu X; Wei Y; Wen XD; Wu LZ; Tung CH; Zhang T
    Adv Mater; 2018 Aug; 30(31):e1800527. PubMed ID: 29873126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ XAFS study on the formation process of cobalt carbide by Fischer-Tropsch reaction.
    Liu Y; Wu D; Yu F; Yang R; Zhang H; Sun F; Zhong L; Jiang Z
    Phys Chem Chem Phys; 2019 May; 21(20):10791-10797. PubMed ID: 31086917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of low carbon olefins on a core-shell K-Fe
    Liu Y; Shao W; Zheng Y; Zhang C; Zhou W; Zhang X; Liu Y
    RSC Adv; 2020 Jul; 10(44):26451-26459. PubMed ID: 35519778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review of Theoretical Studies on Carbon Monoxide Hydrogenation via Fischer-Tropsch Synthesis over Transition Metals.
    Jamaati M; Torkashvand M; Sarabadani Tafreshi S; de Leeuw NH
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The oscillating Fischer-Tropsch reaction.
    Zhang R; Wang Y; Gaspard P; Kruse N
    Science; 2023 Oct; 382(6666):99-103. PubMed ID: 37797023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct production of olefins
    Wang X; Lin T; Li J; Yu F; Lv D; Qi X; Wang H; Zhong L; Sun Y
    RSC Adv; 2019 Jan; 9(8):4131-4139. PubMed ID: 35520170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon Dioxide Reduction with Hydrogen on Fe, Co Supported Alumina and Carbon Catalysts under Supercritical Conditions.
    Bogdan VI; Koklin AE; Kustov AL; Pokusaeva YA; Bogdan TV; Kustov LM
    Molecules; 2021 May; 26(10):. PubMed ID: 34068056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unleashing the Full Potential of Photo-Driven CO Hydrogenation to Light Olefins over Carbon-Coated CoMn-Based Catalysts.
    Li R; Li Y; Li Z; Ouyang S; Yuan H; Zhang T
    Adv Mater; 2023 Nov; 35(44):e2307217. PubMed ID: 37704217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ observation of phase changes of a silica-supported cobalt catalyst for the Fischer-Tropsch process by the development of a synchrotron-compatible in situ/operando powder X-ray diffraction cell.
    Hoffman AS; Singh JA; Bent SF; Bare SR
    J Synchrotron Radiat; 2018 Nov; 25(Pt 6):1673-1682. PubMed ID: 30407177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Conversion of Syngas to Light Olefins through Fischer-Tropsch Synthesis over Fe-Zr Catalysts Modified with Sodium.
    Ma Z; Ma H; Zhang H; Wu X; Qian W; Sun Q; Ying W
    ACS Omega; 2021 Feb; 6(7):4968-4976. PubMed ID: 33644604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts.
    Bezemer GL; Bitter JH; Kuipers HP; Oosterbeek H; Holewijn JE; Xu X; Kapteijn F; van Dillen AJ; de Jong KP
    J Am Chem Soc; 2006 Mar; 128(12):3956-64. PubMed ID: 16551103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Sm on Fe-Mn catalysts for Fischer-Tropsch synthesis.
    Han Z; Qian W; Ma H; Zhang H; Sun Q; Ying W
    RSC Adv; 2019 Oct; 9(55):32240-32246. PubMed ID: 35530804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of Carbon Monoxide Dissociation on a Cobalt Fischer-Tropsch Catalyst.
    Chen W; Zijlstra B; Filot IAW; Pestman R; Hensen EJM
    ChemCatChem; 2018 Jan; 10(1):136-140. PubMed ID: 29399207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.