These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 31477740)
1. Resonance phenomena controlled by external feedback signals and additive noise in neural systems. Nobukawa S; Shibata N; Nishimura H; Doho H; Wagatsuma N; Yamanishi T Sci Rep; 2019 Sep; 9(1):12630. PubMed ID: 31477740 [TBL] [Abstract][Full Text] [Related]
2. Controlling Chaotic Resonance using External Feedback Signals in Neural Systems. Nobukawa S; Shibata N Sci Rep; 2019 Mar; 9(1):4990. PubMed ID: 30899077 [TBL] [Abstract][Full Text] [Related]
3. Transition of Neural Activity From the Chaotic Bipolar-Disorder State to the Periodic Healthy State Using External Feedback Signals. Doho H; Nobukawa S; Nishimura H; Wagatsuma N; Takahashi T Front Comput Neurosci; 2020; 14():76. PubMed ID: 32982709 [TBL] [Abstract][Full Text] [Related]
4. An Approach for Stabilizing Abnormal Neural Activity in ADHD Using Chaotic Resonance. Nobukawa S; Wagatsuma N; Nishimura H; Doho H; Takahashi T Front Comput Neurosci; 2021; 15():726641. PubMed ID: 34539367 [TBL] [Abstract][Full Text] [Related]
5. Series-nonuniform rational B-spline signal feedback: From chaos to any embedded periodic orbit or target point. Shao C; Xue Y; Fang F; Bai F; Yin P; Wang B Chaos; 2015 Jul; 25(7):073105. PubMed ID: 26232956 [TBL] [Abstract][Full Text] [Related]
6. Noise-free stochastic resonance at an interior crisis. Jüngling T; Benner H; Stemler T; Just W Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036216. PubMed ID: 18517494 [TBL] [Abstract][Full Text] [Related]
7. Random activity at the microscopic neural level in cortex ("noise") sustains and is regulated by low-dimensional dynamics of macroscopic cortical activity ("chaos"). Freeman WJ Int J Neural Syst; 1996 Sep; 7(4):473-80. PubMed ID: 8968838 [TBL] [Abstract][Full Text] [Related]
8. Analysis of noise-induced transitions from regular to chaotic oscillations in the Chen system. Bashkirtseva I; Chen G; Ryashko L Chaos; 2012 Sep; 22(3):033104. PubMed ID: 23020443 [TBL] [Abstract][Full Text] [Related]
9. Constructive effects of noise in homoclinic chaotic systems. Zhou CS; Kurths J; Allaria E; Boccaletti S; Meucci R; Arecchi FT Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066220. PubMed ID: 16241339 [TBL] [Abstract][Full Text] [Related]
10. Using unstable periodic orbits to overcome distortion in chaotic signals. Carroll TL Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt A):5469-73. PubMed ID: 11970420 [TBL] [Abstract][Full Text] [Related]
11. Noise-aided control of chaotic dynamics in a logistic map. Escalona J; Parmananda P Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5B):5987-9. PubMed ID: 11031665 [TBL] [Abstract][Full Text] [Related]
12. Attractor switching by neural control of chaotic neurodynamics. Pasemann F; Stollenwerk N Network; 1998 Nov; 9(4):549-61. PubMed ID: 10221579 [TBL] [Abstract][Full Text] [Related]
13. Stochastic and coherence resonance in an in silico neural model. Chiu AW; Bardakjian BL Ann Biomed Eng; 2004 May; 32(5):732-43. PubMed ID: 15171627 [TBL] [Abstract][Full Text] [Related]
14. Hypothesis: the central oscillator of the circadian clock is a controlled chaotic attractor. Lloyd AL; Lloyd D Biosystems; 1993; 29(2-3):77-85. PubMed ID: 8374069 [TBL] [Abstract][Full Text] [Related]
15. Stochastic multiresonance in a chaotic map with fractal basins of attraction. Matyjaśkiewicz S; Krawiecki A; Holyst JA; Kacperski K; Ebeling W Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026215. PubMed ID: 11308566 [TBL] [Abstract][Full Text] [Related]
16. Suppression of chaotic oscillations in a microchip laser by injection of a new orbit into the chaotic attractor. Uchida A; Sato T; Kannari F Opt Lett; 1998 Mar; 23(6):460-2. PubMed ID: 18084544 [TBL] [Abstract][Full Text] [Related]
17. The role of chaotic resonance in cerebellar learning. Tokuda IT; Han CE; Aihara K; Kawato M; Schweighofer N Neural Netw; 2010 Sep; 23(7):836-42. PubMed ID: 20494551 [TBL] [Abstract][Full Text] [Related]
18. Noise-induced Hopf-bifurcation-type sequence and transition to chaos in the lorenz equations. Gao JB; Tung WW; Rao N Phys Rev Lett; 2002 Dec; 89(25):254101. PubMed ID: 12484887 [TBL] [Abstract][Full Text] [Related]