These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 31478059)

  • 1. Convenient non-invasive electrochemical techniques to monitor microbial processes: current state and perspectives.
    Turick CE; Shimpalee S; Satjaritanun P; Weidner J; Greenway S
    Appl Microbiol Biotechnol; 2019 Oct; 103(20):8327-8338. PubMed ID: 31478059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial catalyzed electrochemical systems: a bio-factory with multi-facet applications.
    Venkata Mohan S; Velvizhi G; Vamshi Krishna K; Lenin Babu M
    Bioresour Technol; 2014 Aug; 165():355-64. PubMed ID: 24791713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial electrochemical technologies: Electronic circuitry and characterization tools.
    Sánchez C; Dessì P; Duffy M; Lens PNL
    Biosens Bioelectron; 2020 Feb; 150():111884. PubMed ID: 31780409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial bioelectrosynthesis of hydrogen: Current challenges and scale-up.
    Kitching M; Butler R; Marsili E
    Enzyme Microb Technol; 2017 Jan; 96():1-13. PubMed ID: 27871368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives.
    Rosenbaum MA; Franks AE
    Appl Microbiol Biotechnol; 2014 Jan; 98(2):509-18. PubMed ID: 24270896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electricity generation from the treatment of wastewater with a hybrid up-flow microbial fuel cell.
    Katuri KP; Scott K
    Biotechnol Bioeng; 2010 Sep; 107(1):52-8. PubMed ID: 20506286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revealing metabolic storage processes in electrode respiring bacteria by differential electrochemical mass spectrometry.
    Kubannek F; Schröder U; Krewer U
    Bioelectrochemistry; 2018 Jun; 121():160-168. PubMed ID: 29454193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-situ electrochemical analysis of microbial activity.
    Martin AL; Satjaritanun P; Shimpalee S; Devivo BA; Weidner J; Greenway S; Henson JM; Turick CE
    AMB Express; 2018 Oct; 8(1):162. PubMed ID: 30288622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioelectrochemical systems and synthetic biology: more power, more products.
    Glaven SM
    Microb Biotechnol; 2019 Sep; 12(5):819-823. PubMed ID: 31264368
    [No Abstract]   [Full Text] [Related]  

  • 10. Isolation and Characterization of a Novel Electrogenic Bacterium, Dietzia sp. RNV-4.
    Sacco NJ; Bonetto MC; Cortón E
    PLoS One; 2017; 12(2):e0169955. PubMed ID: 28192491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods for understanding microbial community structures and functions in microbial fuel cells: a review.
    Zhi W; Ge Z; He Z; Zhang H
    Bioresour Technol; 2014 Nov; 171():461-8. PubMed ID: 25223851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrogenic Bacteria Promise New Opportunities for Powering, Sensing, and Synthesizing.
    Choi S
    Small; 2022 May; 18(18):e2107902. PubMed ID: 35119203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electro-stimulated microbial factory for value added product synthesis.
    Roy S; Schievano A; Pant D
    Bioresour Technol; 2016 Aug; 213():129-139. PubMed ID: 27034155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term effect of set potential on biocathodes in microbial fuel cells: electrochemical and phylogenetic characterization.
    Xia X; Sun Y; Liang P; Huang X
    Bioresour Technol; 2012 Sep; 120():26-33. PubMed ID: 22784950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical and impedance characterization of Microbial Fuel Cells based on 2D and 3D anodic electrodes working with seawater microorganisms under continuous operation.
    Hidalgo D; Sacco A; Hernández S; Tommasi T
    Bioresour Technol; 2015 Nov; 195():139-46. PubMed ID: 26166463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical and phylogenetic analyses of current-generating microorganisms in a thermophilic microbial fuel cell.
    Fu Q; Kobayashi H; Kawaguchi H; Vilcaez J; Wakayama T; Maeda H; Sato K
    J Biosci Bioeng; 2013 Mar; 115(3):268-71. PubMed ID: 23164680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-dependent ammonia removal pathways in microbial fuel cell system.
    Kim T; An J; Lee H; Jang JK; Chang IS
    Bioresour Technol; 2016 Sep; 215():290-295. PubMed ID: 27090407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of dielectric spectroscopy to unravel the physiological state of microorganisms: current state, prospects and limits.
    Flores-Cosío G; Herrera-López EJ; Arellano-Plaza M; Gschaedler-Mathis A; Kirchmayr M; Amaya-Delgado L
    Appl Microbiol Biotechnol; 2020 Jul; 104(14):6101-6113. PubMed ID: 32440707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of a static magnetic field on the electricity production of Shewanella-inoculated microbial fuel cells.
    Li WW; Sheng GP; Liu XW; Cai PJ; Sun M; Xiao X; Wang YK; Tong ZH; Dong F; Yu HQ
    Biosens Bioelectron; 2011 Jun; 26(10):3987-92. PubMed ID: 21493055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of competitive microorganisms using anaerobic membrane bioreactors as pretreatment to microbial electrochemical cells.
    Dhar BR; Gao Y; Yeo H; Lee HS
    Bioresour Technol; 2013 Nov; 148():208-14. PubMed ID: 24047682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.