These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 31478106)
1. Using big data to predict pertussis infections in Jinan city, China: a time series analysis. Zhang Y; Bambrick H; Mengersen K; Tong S; Feng L; Zhang L; Liu G; Xu A; Hu W Int J Biometeorol; 2020 Jan; 64(1):95-104. PubMed ID: 31478106 [TBL] [Abstract][Full Text] [Related]
2. Monitoring Pertussis Infections Using Internet Search Queries. Zhang Y; Milinovich G; Xu Z; Bambrick H; Mengersen K; Tong S; Hu W Sci Rep; 2017 Sep; 7(1):10437. PubMed ID: 28874880 [TBL] [Abstract][Full Text] [Related]
3. Association of sociodemographic factors and internet query data with pertussis infections in Shandong, China. Zhang Y; Bambrick H; Mengersen K; Tong S; Feng L; Zhang L; Liu G; Xu A; Hu W Epidemiol Infect; 2019 Nov; 147():e302. PubMed ID: 31727192 [TBL] [Abstract][Full Text] [Related]
4. Using Google Trends and ambient temperature to predict seasonal influenza outbreaks. Zhang Y; Bambrick H; Mengersen K; Tong S; Hu W Environ Int; 2018 Aug; 117():284-291. PubMed ID: 29778013 [TBL] [Abstract][Full Text] [Related]
5. Predicting seasonal influenza epidemics using cross-hemisphere influenza surveillance data and local internet query data. Zhang Y; Yakob L; Bonsall MB; Hu W Sci Rep; 2019 Mar; 9(1):3262. PubMed ID: 30824756 [TBL] [Abstract][Full Text] [Related]
6. Predicting the hand, foot, and mouth disease incidence using search engine query data and climate variables: an ecological study in Guangdong, China. Du Z; Xu L; Zhang W; Zhang D; Yu S; Hao Y BMJ Open; 2017 Oct; 7(10):e016263. PubMed ID: 28988169 [TBL] [Abstract][Full Text] [Related]
7. Dengue Baidu Search Index data can improve the prediction of local dengue epidemic: A case study in Guangzhou, China. Li Z; Liu T; Zhu G; Lin H; Zhang Y; He J; Deng A; Peng Z; Xiao J; Rutherford S; Xie R; Zeng W; Li X; Ma W PLoS Negl Trop Dis; 2017 Mar; 11(3):e0005354. PubMed ID: 28263988 [TBL] [Abstract][Full Text] [Related]
8. Time series modeling of pertussis incidence in China from 2004 to 2018 with a novel wavelet based SARIMA-NAR hybrid model. Wang Y; Xu C; Wang Z; Zhang S; Zhu Y; Yuan J PLoS One; 2018; 13(12):e0208404. PubMed ID: 30586416 [TBL] [Abstract][Full Text] [Related]
9. Time series analysis of dengue incidence in Guadeloupe, French West Indies: forecasting models using climate variables as predictors. Gharbi M; Quenel P; Gustave J; Cassadou S; La Ruche G; Girdary L; Marrama L BMC Infect Dis; 2011 Jun; 11():166. PubMed ID: 21658238 [TBL] [Abstract][Full Text] [Related]
10. Assessing the social and environmental determinants of pertussis epidemics in Queensland, Australia: a Bayesian spatio-temporal analysis. Huang X; Lambert S; Lau C; Soares Magalhaes RJ; Marquess J; Rajmokan M; Milinovich G; Hu W Epidemiol Infect; 2017 Apr; 145(6):1221-1230. PubMed ID: 28091337 [TBL] [Abstract][Full Text] [Related]
11. The prediction of influenza-like illness using national influenza surveillance data and Baidu query data. Wei S; Lin S; Wenjing Z; Shaoxia S; Yuejie Y; Yujie H; Shu Z; Zhong L; Ti L BMC Public Health; 2024 Feb; 24(1):513. PubMed ID: 38369456 [TBL] [Abstract][Full Text] [Related]
12. Developing a dengue prediction model based on climate in Tawau, Malaysia. Jayaraj VJ; Avoi R; Gopalakrishnan N; Raja DB; Umasa Y Acta Trop; 2019 Sep; 197():105055. PubMed ID: 31185224 [TBL] [Abstract][Full Text] [Related]
13. Resurgence of Pertussis Infections in Shandong, China: Space-Time Cluster and Trend Analysis. Zhang Y; Bambrick H; Mengersen K; Tong S; Feng L; Zhang L; Liu G; Xu A; Hu W Am J Trop Med Hyg; 2019 Jun; 100(6):1342-1354. PubMed ID: 30994096 [TBL] [Abstract][Full Text] [Related]
14. Time series analysis of temporal trends in the pertussis incidence in Mainland China from 2005 to 2016. Zeng Q; Li D; Huang G; Xia J; Wang X; Zhang Y; Tang W; Zhou H Sci Rep; 2016 Aug; 6():32367. PubMed ID: 27577101 [TBL] [Abstract][Full Text] [Related]
15. Climatic Variables and Malaria Morbidity in Mutale Local Municipality, South Africa: A 19-Year Data Analysis. Adeola AM; Botai JO; Rautenbach H; Adisa OM; Ncongwane KP; Botai CM; Adebayo-Ojo TC Int J Environ Res Public Health; 2017 Nov; 14(11):. PubMed ID: 29117114 [TBL] [Abstract][Full Text] [Related]
16. Climate variations and bacillary dysentery in northern and southern cities of China. Zhang Y; Bi P; Hiller JE; Sun Y; Ryan P J Infect; 2007 Aug; 55(2):194-200. PubMed ID: 17258812 [TBL] [Abstract][Full Text] [Related]
17. Climate variability, satellite-derived physical environmental data and human leptospirosis: A retrospective ecological study in China. Dhewantara PW; Hu W; Zhang W; Yin WW; Ding F; Mamun AA; Soares Magalhães RJ Environ Res; 2019 Sep; 176():108523. PubMed ID: 31203048 [TBL] [Abstract][Full Text] [Related]
18. Developing a dengue forecast model using machine learning: A case study in China. Guo P; Liu T; Zhang Q; Wang L; Xiao J; Zhang Q; Luo G; Li Z; He J; Zhang Y; Ma W PLoS Negl Trop Dis; 2017 Oct; 11(10):e0005973. PubMed ID: 29036169 [TBL] [Abstract][Full Text] [Related]
19. Deep-Learning Model for Influenza Prediction From Multisource Heterogeneous Data in a Megacity: Model Development and Evaluation. Yang L; Li G; Yang J; Zhang T; Du J; Liu T; Zhang X; Han X; Li W; Ma L; Feng L; Yang W J Med Internet Res; 2023 Feb; 25():e44238. PubMed ID: 36780207 [TBL] [Abstract][Full Text] [Related]
20. Forecasting influenza epidemics by integrating internet search queries and traditional surveillance data with the support vector machine regression model in Liaoning, from 2011 to 2015. Liang F; Guan P; Wu W; Huang D PeerJ; 2018; 6():e5134. PubMed ID: 29967755 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]