These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

485 related articles for article (PubMed ID: 31478455)

  • 1. Impact assessment of major abiotic stresses on the proteome profiling of some important crop plants: a current update.
    Sharma JK; Sihmar M; Santal AR; Singh NP
    Biotechnol Genet Eng Rev; 2019 Oct; 35(2):126-160. PubMed ID: 31478455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Crops for the Future: A Phosphoproteomics Approach.
    Kumar V; Khare T; Sharma M; Wani SH
    Curr Protein Pept Sci; 2018 Feb; 19(4):413-426. PubMed ID: 28190387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops--A Proteomic Perspective.
    Kosová K; Vítámvás P; Urban MO; Klíma M; Roy A; Prášil IT
    Int J Mol Sci; 2015 Sep; 16(9):20913-42. PubMed ID: 26340626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant responses to ambient temperature fluctuations and water-limiting conditions: A proteome-wide perspective.
    Johnová P; Skalák J; Saiz-Fernández I; Brzobohatý B
    Biochim Biophys Acta; 2016 Aug; 1864(8):916-31. PubMed ID: 26861773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in crop proteomics: PTMs of proteins under abiotic stress.
    Wu X; Gong F; Cao D; Hu X; Wang W
    Proteomics; 2016 Mar; 16(5):847-65. PubMed ID: 26616472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomics for abiotic stresses in legumes: present status and future directions.
    Jan N; Rather AM; John R; Chaturvedi P; Ghatak A; Weckwerth W; Zargar SM; Mir RA; Khan MA; Mir RR
    Crit Rev Biotechnol; 2023 Mar; 43(2):171-190. PubMed ID: 35109728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the responses of rice to environmental stress using proteomics.
    Singh R; Jwa NS
    J Proteome Res; 2013 Nov; 12(11):4652-69. PubMed ID: 23984864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ethylene Response Factor (ERF) Family Proteins in Abiotic Stresses and CRISPR-Cas9 Genome Editing of ERFs for Multiple Abiotic Stress Tolerance in Crop Plants: A Review.
    Debbarma J; Sarki YN; Saikia B; Boruah HPD; Singha DL; Chikkaputtaiah C
    Mol Biotechnol; 2019 Feb; 61(2):153-172. PubMed ID: 30600447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein and Proteome Atlas for Plants under Stresses: New Highlights and Ways for Integrated Omics in Post-Genomics Era.
    Wang X
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31640274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosomal Distribution of Genes Conferring Tolerance to Abiotic Stresses Versus That of Genes Controlling Resistance to Biotic Stresses in Plants.
    Wang RR
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32155784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach.
    Tran LS; Nishiyama R; Yamaguchi-Shinozaki K; Shinozaki K
    GM Crops; 2010; 1(1):32-9. PubMed ID: 21912210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relevance of proteomic investigations in plant abiotic stress physiology.
    Hakeem KR; Chandna R; Ahmad P; Iqbal M; Ozturk M
    OMICS; 2012 Nov; 16(11):621-35. PubMed ID: 23046473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Omics Pipeline and Omics-Integration Approach to Decipher Plant's Abiotic Stress Tolerance Responses.
    Roychowdhury R; Das SP; Gupta A; Parihar P; Chandrasekhar K; Sarker U; Kumar A; Ramrao DP; Sudhakar C
    Genes (Basel); 2023 Jun; 14(6):. PubMed ID: 37372461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cold stress and acclimation - what is important for metabolic adjustment?
    Janská A; Marsík P; Zelenková S; Ovesná J
    Plant Biol (Stuttg); 2010 May; 12(3):395-405. PubMed ID: 20522175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant cell organelle proteomics in response to abiotic stress.
    Hossain Z; Nouri MZ; Komatsu S
    J Proteome Res; 2012 Jan; 11(1):37-48. PubMed ID: 22029473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant proteomic research for improvement of food crops under stresses: a review.
    Mustafa G; Komatsu S
    Mol Omics; 2021 Dec; 17(6):860-880. PubMed ID: 34870299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soybean proteomics for unraveling abiotic stress response mechanism.
    Hossain Z; Khatoon A; Komatsu S
    J Proteome Res; 2013 Nov; 12(11):4670-84. PubMed ID: 24016329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress and challenges for abiotic stress proteomics of crop plants.
    Barkla BJ; Vera-Estrella R; Pantoja O
    Proteomics; 2013 Jun; 13(12-13):1801-15. PubMed ID: 23512887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomics techniques for the development of flood tolerant crops.
    Komatsu S; Hiraga S; Yanagawa Y
    J Proteome Res; 2012 Jan; 11(1):68-78. PubMed ID: 22029422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicon: a duo synergy for regulating crop growth and hormonal signaling under abiotic stress conditions.
    Kim YH; Khan AL; Lee IJ
    Crit Rev Biotechnol; 2016 Dec; 36(6):1099-1109. PubMed ID: 26381374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.