These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 31478639)
1. Delamination Mechanics of Carbon Nanotube Micropillars. Brown J; Hajilounezhad T; Dee NT; Kim S; Hart AJ; Maschmann MR ACS Appl Mater Interfaces; 2019 Sep; 11(38):35221-35227. PubMed ID: 31478639 [TBL] [Abstract][Full Text] [Related]
2. Selectively Tuning the Substrate Adhesion Strength of Aligned Carbon Nanotube Arrays via Thermal Postgrowth Processing. Kaiser AL; Acauan LH; Vanderhout AR; Zaman A; Lidston DL; Stein IY; Wardle BL ACS Appl Mater Interfaces; 2023 Apr; 15(13):17029-17044. PubMed ID: 36958023 [TBL] [Abstract][Full Text] [Related]
3. Real-Time Imaging of Self-Organization and Mechanical Competition in Carbon Nanotube Forest Growth. Balakrishnan V; Bedewy M; Meshot ER; Pattinson SW; Polsen ES; Laye F; Zakharov DN; Stach EA; Hart AJ ACS Nano; 2016 Dec; 10(12):11496-11504. PubMed ID: 27959511 [TBL] [Abstract][Full Text] [Related]
4. Predictive Synthesis of Freeform Carbon Nanotube Microarchitectures by Strain-Engineered Chemical Vapor Deposition. Park SJ; Zhao H; Kim S; De Volder M; John Hart A Small; 2016 Aug; 12(32):4393-403. PubMed ID: 27378165 [TBL] [Abstract][Full Text] [Related]
5. Growth and Mechanics of Heterogeneous, 3D Carbon Nanotube Forest Microstructures Formed by Sequential Selective-Area Synthesis. Hines R; Hajilounezhad T; Love-Baker C; Koerner G; Maschmann MR ACS Appl Mater Interfaces; 2020 Apr; 12(15):17893-17900. PubMed ID: 32208632 [TBL] [Abstract][Full Text] [Related]
6. Mechanical coupling limits the density and quality of self-organized carbon nanotube growth. Bedewy M; Hart AJ Nanoscale; 2013 Apr; 5(7):2928-37. PubMed ID: 23455411 [TBL] [Abstract][Full Text] [Related]
7. Effects of morphology on the micro-compression response of carbon nanotube forests. Abadi PP; Hutchens SB; Greer JR; Cola BA; Graham S Nanoscale; 2012 Jun; 4(11):3373-80. PubMed ID: 22543679 [TBL] [Abstract][Full Text] [Related]
8. Deformation response of conformally coated carbon nanotube forest. Abadi PP; Maschmann MR; Baur JW; Graham S; Cola BA Nanotechnology; 2013 Nov; 24(47):475707. PubMed ID: 24192522 [TBL] [Abstract][Full Text] [Related]
9. A predictive model of the tensile strength of twisted carbon nanotube yarns. Jeon SY; Jang J; Koo BW; Kim YW; Yu WR Nanotechnology; 2017 Jan; 28(1):015703. PubMed ID: 27897138 [TBL] [Abstract][Full Text] [Related]
10. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes. Hedmer M; Isaxon C; Nilsson PT; Ludvigsson L; Messing ME; Genberg J; Skaug V; Bohgard M; Tinnerberg H; Pagels JH Ann Occup Hyg; 2014 Apr; 58(3):355-79. PubMed ID: 24389082 [TBL] [Abstract][Full Text] [Related]
11. Carbon Nanotube Emissions from Arc Discharge Production: Classification of Particle Types with Electron Microscopy and Comparison with Direct Reading Techniques. Ludvigsson L; Isaxon C; Nilsson PT; Tinnerberg H; Messing ME; Rissler J; Skaug V; Gudmundsson A; Bohgard M; Hedmer M; Pagels J Ann Occup Hyg; 2016 May; 60(4):493-512. PubMed ID: 26748380 [TBL] [Abstract][Full Text] [Related]
12. Bond strength of individual carbon nanotubes grown directly on carbon fibers. Kim KJ; Lee G; Kim SD; Kim SI; Youk JH; Lee J; Kim YW; Yu WR Nanotechnology; 2016 Oct; 27(40):405704. PubMed ID: 27581367 [TBL] [Abstract][Full Text] [Related]
13. Elastic deformation of carbon-nanotube nanorings. Zheng M; Ke C Small; 2010 Aug; 6(15):1647-55. PubMed ID: 20623528 [TBL] [Abstract][Full Text] [Related]
14. Synergetic chemical coupling controls the uniformity of carbon nanotube microstructure growth. Bedewy M; Farmer B; Hart AJ ACS Nano; 2014 Jun; 8(6):5799-812. PubMed ID: 24794192 [TBL] [Abstract][Full Text] [Related]
15. Joint Theoretical and Experimental Study of Stress Graphitization in Aligned Carbon Nanotube/Carbon Matrix Composites. Zhang L; Kowalik M; Mao Q; Damirchi B; Zhang Y; Bradford PD; Li Q; van Duin ACT; Zhu YT ACS Appl Mater Interfaces; 2023 Jul; 15(27):32656-32666. PubMed ID: 37384459 [TBL] [Abstract][Full Text] [Related]
16. Strong adhesion and friction coupling in hierarchical carbon nanotube arrays for dry adhesive applications. Hu S; Xia Z; Gao X ACS Appl Mater Interfaces; 2012 Apr; 4(4):1972-80. PubMed ID: 22404041 [TBL] [Abstract][Full Text] [Related]
17. In-Situ Preparation of Aramid-Multiwalled CNT Nano-Composites: Morphology, Thermal Mechanical and Electric Properties. Shiju J; Al-Sagheer F; Bumajdad A; Ahmad Z Nanomaterials (Basel); 2018 May; 8(5):. PubMed ID: 29735952 [TBL] [Abstract][Full Text] [Related]
18. A model for the strength of yarn-like carbon nanotube fibers. Vilatela JJ; Elliott JA; Windle AH ACS Nano; 2011 Mar; 5(3):1921-7. PubMed ID: 21348503 [TBL] [Abstract][Full Text] [Related]
19. Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing. Tawfick S; O'Brien K; Hart AJ Small; 2009 Nov; 5(21):2467-73. PubMed ID: 19685444 [TBL] [Abstract][Full Text] [Related]
20. Investigation of interfacial adhesion between the top ends of carbon nanotubes. Choi J; Eun Y; Kim J ACS Appl Mater Interfaces; 2014 May; 6(9):6598-605. PubMed ID: 24684399 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]