BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 31478654)

  • 1. How Cellulose Nanofibrils Affect Bulk, Surface, and Foam Properties of Anionic Surfactant Solutions.
    Xiang W; Preisig N; Ketola A; Tardy BL; Bai L; Ketoja JA; Stubenrauch C; Rojas OJ
    Biomacromolecules; 2019 Dec; 20(12):4361-4369. PubMed ID: 31478654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formulation and Composition Effects in Phase Transitions of Emulsions Costabilized by Cellulose Nanofibrils and an Ionic Surfactant.
    Huan S; Yokota S; Bai L; Ago M; Borghei M; Kondo T; Rojas OJ
    Biomacromolecules; 2017 Dec; 18(12):4393-4404. PubMed ID: 29131593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheology of cellulose nanofibrils in the presence of surfactants.
    Quennouz N; Hashmi SM; Choi HS; Kim JW; Osuji CO
    Soft Matter; 2016 Jan; 12(1):157-64. PubMed ID: 26466557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant micelles containing solubilized oil decrease foam film thickness stability.
    Lee J; Nikolov A; Wasan D
    J Colloid Interface Sci; 2014 Feb; 415():18-25. PubMed ID: 24267325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms behind the stabilizing action of cellulose nanofibrils in wet-stable cellulose foams.
    Cervin NT; Johansson E; Benjamins JW; Wågberg L
    Biomacromolecules; 2015 Mar; 16(3):822-31. PubMed ID: 25635472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trapping of Sodium Dodecyl Sulfate at the Air-Water Interface of Oscillating Bubbles.
    Corti M; Pannuzzo M; Raudino A
    Langmuir; 2015 Jun; 31(23):6277-81. PubMed ID: 26039913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface tension and rheology of aqueous dispersed systems containing a new hydrophobically modified polymer and surfactants.
    Claro C; Muñoz J; de la Fuente J; Jiménez-Castellanos MR; Lucero MJ
    Int J Pharm; 2008 Jan; 347(1-2):45-53. PubMed ID: 17693044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of surfactant and electrolyte concentrations on bubble formation and stabilization.
    Xu Q; Nakajima M; Ichikawa S; Nakamura N; Roy P; Okadome H; Shiina T
    J Colloid Interface Sci; 2009 Apr; 332(1):208-14. PubMed ID: 19144348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscosity and stability of ultra-high internal phase CO2-in-water foams stabilized with surfactants and nanoparticles with or without polyelectrolytes.
    Xue Z; Worthen A; Qajar A; Robert I; Bryant SL; Huh C; Prodanović M; Johnston KP
    J Colloid Interface Sci; 2016 Jan; 461():383-395. PubMed ID: 26414421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion-specific effects in foams.
    Sett S; Karakashev SI; Smoukov SK; Yarin AL
    Adv Colloid Interface Sci; 2015 Nov; 225():98-113. PubMed ID: 26386757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulose nanofibrils for one-step stabilization of multiple emulsions (W/O/W) based on soybean oil.
    Carrillo CA; Nypelö TE; Rojas OJ
    J Colloid Interface Sci; 2015 May; 445():166-173. PubMed ID: 25617611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of cationic cellulose structure on its interactions with sodium dodecylsulfate: implications on the properties of the aqueous dispersions and hydrogels.
    Rodríguez R; Alvarez-Lorenzo C; Concheiro A
    Eur J Pharm Biopharm; 2003 Jul; 56(1):133-42. PubMed ID: 12837491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid cellulose nanofiber based foams - Towards facile design of sustained drug delivery systems.
    Svagan AJ; Benjamins JW; Al-Ansari Z; Shalom DB; Müllertz A; Wågberg L; Löbmann K
    J Control Release; 2016 Dec; 244(Pt A):74-82. PubMed ID: 27847327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isothermal titration calorimetry study of pectin-ionic surfactant interactions.
    McClements DJ
    J Agric Food Chem; 2000 Nov; 48(11):5604-11. PubMed ID: 11087526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One more extreme near the critical micelle concentration: optical activity.
    Rusanov AI; Nekrasov AG
    Langmuir; 2010 Sep; 26(17):13767-9. PubMed ID: 20806962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of counterions on surface and foaming properties of dodecyl sulfate.
    Pandey S; Bagwe RP; Shah DO
    J Colloid Interface Sci; 2003 Nov; 267(1):160-6. PubMed ID: 14554181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.
    Dan A; Gochev G; Miller R
    J Colloid Interface Sci; 2015 Jul; 449():383-91. PubMed ID: 25666640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aqueous Foams in the Presence of Surfactant Crystals.
    Binks BP; Shi H
    Langmuir; 2020 Feb; 36(4):991-1002. PubMed ID: 31985231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial properties and foam stability effect of novel gemini-type surfactants in aqueous solutions.
    Acharya DP; Gutiérrez JM; Aramaki K; Aratani K; Kunieda H
    J Colloid Interface Sci; 2005 Nov; 291(1):236-43. PubMed ID: 16154135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial and bulk behavior of sodium dodecyl sulfate in isopropanol-water and in isopropanol-poly(vinylpyrrolidone)-water media.
    Dan A; Chakraborty I; Ghosh S; Moulik SP
    Langmuir; 2007 Jul; 23(14):7531-8. PubMed ID: 17547430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.