These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
384 related articles for article (PubMed ID: 31478667)
1. Density Functional Calculations for Aqueous Silver Clusters Containing Water and Nitrate Ligands. Baetzold RC J Phys Chem B; 2019 Oct; 123(39):8300-8312. PubMed ID: 31478667 [TBL] [Abstract][Full Text] [Related]
2. SM6: A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters. Kelly CP; Cramer CJ; Truhlar DG J Chem Theory Comput; 2005 Nov; 1(6):1133-52. PubMed ID: 26631657 [TBL] [Abstract][Full Text] [Related]
3. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Marenich AV; Cramer CJ; Truhlar DG J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259 [TBL] [Abstract][Full Text] [Related]
4. Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. Kelly CP; Cramer CJ; Truhlar DG J Phys Chem B; 2006 Aug; 110(32):16066-81. PubMed ID: 16898764 [TBL] [Abstract][Full Text] [Related]
5. Cluster-Continuum Calculations of Hydration Free Energies of Anions and Group 12 Divalent Cations. Riccardi D; Guo HB; Parks JM; Gu B; Liang L; Smith JC J Chem Theory Comput; 2013 Jan; 9(1):555-69. PubMed ID: 26589054 [TBL] [Abstract][Full Text] [Related]
6. Accuracy of the microsolvation-continuum approach in computing the pK(a) and the free energies of formation of phosphate species in aqueous solution. Tang E; Di Tommaso D; de Leeuw NH Phys Chem Chem Phys; 2010 Nov; 12(41):13804-15. PubMed ID: 20862433 [TBL] [Abstract][Full Text] [Related]
7. Predicting the energy of the water exchange reaction and free energy of solvation for the uranyl ion in aqueous solution. Gutowski KE; Dixon DA J Phys Chem A; 2006 Jul; 110(28):8840-56. PubMed ID: 16836448 [TBL] [Abstract][Full Text] [Related]
8. Calculation of solvation free energies of charged solutes using mixed cluster/continuum models. Bryantsev VS; Diallo MS; Goddard WA J Phys Chem B; 2008 Aug; 112(32):9709-19. PubMed ID: 18646800 [TBL] [Abstract][Full Text] [Related]
9. Chemical Equilibrium of Zinc Acetate Complexes in Ethanol Solution. A Theoretical Description through Thermodynamic Cycles. Reyna-Luna J; Flores R; Gómez-Balderas R; Franco-Pérez M J Phys Chem B; 2020 Apr; 124(16):3355-3370. PubMed ID: 32216349 [TBL] [Abstract][Full Text] [Related]
10. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges. Marenich AV; Olson RM; Kelly CP; Cramer CJ; Truhlar DG J Chem Theory Comput; 2007 Nov; 3(6):2011-33. PubMed ID: 26636198 [TBL] [Abstract][Full Text] [Related]
11. Cluster-continuum quasichemical theory calculation of the lithium ion solvation in water, acetonitrile and dimethyl sulfoxide: an absolute single-ion solvation free energy scale. Carvalho NF; Pliego JR Phys Chem Chem Phys; 2015 Oct; 17(40):26745-55. PubMed ID: 26395146 [TBL] [Abstract][Full Text] [Related]
12. Density functional theory-based prediction of the formation constants of complexes of ammonia in aqueous solution: indications of the role of relativistic effects in the solution chemistry of gold(I). Hancock RD; Bartolotti LJ Inorg Chem; 2005 Oct; 44(20):7175-83. PubMed ID: 16180881 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation. Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037 [TBL] [Abstract][Full Text] [Related]
14. Theoretical study of the formation of mercury (Hg2+) complexes in solution using an explicit solvation shell in implicit solvent calculations. Afaneh AT; Schreckenbach G; Wang F J Phys Chem B; 2014 Sep; 118(38):11271-83. PubMed ID: 25076413 [TBL] [Abstract][Full Text] [Related]
15. Hydration and Ion-Pair Formation of NaNO Rudolph WW; Fischer D; Irmer G Appl Spectrosc; 2021 Apr; 75(4):395-411. PubMed ID: 33393351 [TBL] [Abstract][Full Text] [Related]
16. Anchor points for the unified Brønsted acidity scale: the rCCC model for the calculation of standard Gibbs energies of proton solvation in eleven representative liquid media. Himmel D; Goll SK; Leito I; Krossing I Chemistry; 2011 May; 17(21):5808-26. PubMed ID: 21542031 [TBL] [Abstract][Full Text] [Related]
17. Theoretical studies on photoelectron and IR spectral properties of Br2.-(H2O)n clusters. Pathak AK; Mukherjee T; Maity DK J Chem Phys; 2007 Jul; 127(4):044304. PubMed ID: 17672687 [TBL] [Abstract][Full Text] [Related]
18. Selectivity of the highly preorganized tetradentate ligand 2,9-di(pyrid-2-yl)-1,10-phenanthroline for metal ions in aqueous solution, including lanthanide(III) ions and the uranyl(VI) cation. Carolan AN; Cockrell GM; Williams NJ; Zhang G; VanDerveer DG; Lee HS; Thummel RP; Hancock RD Inorg Chem; 2013 Jan; 52(1):15-27. PubMed ID: 23231454 [TBL] [Abstract][Full Text] [Related]
19. Charge-dependent cavity radii for an accurate dielectric continuum model of solvation with emphasis on ions: aqueous solutes with oxo, hydroxo, amino, methyl, chloro, bromo, and fluoro functionalities. Ginovska B; Camaioni DM; Dupuis M; Schwerdtfeger CA; Gil Q J Phys Chem A; 2008 Oct; 112(42):10604-13. PubMed ID: 18816107 [TBL] [Abstract][Full Text] [Related]
20. Hydrates of copper dichloride in aqueous solution: a density functional theory and polarized continuum model investigation. Xia FF; Yi HB; Zeng D J Phys Chem A; 2009 Dec; 113(51):14029-38. PubMed ID: 19928772 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]