BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 31478672)

  • 1. Exploring the Ligand Binding/Unbinding Pathway by Selectively Enhanced Sampling of Ligand in a Protein-Ligand Complex.
    Shao Q; Zhu W
    J Phys Chem B; 2019 Sep; 123(38):7974-7983. PubMed ID: 31478672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Receptor rigidity and ligand mobility in trypsin-ligand complexes.
    Guvench O; Price DJ; Brooks CL
    Proteins; 2005 Feb; 58(2):407-17. PubMed ID: 15578663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple Ligand Unbinding Pathways and Ligand-Induced Destabilization Revealed by WExplore.
    Dickson A; Lotz SD
    Biophys J; 2017 Feb; 112(4):620-629. PubMed ID: 28256222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of protein-ligand binding free energy by using a polarizable potential.
    Jiao D; Golubkov PA; Darden TA; Ren P
    Proc Natl Acad Sci U S A; 2008 Apr; 105(17):6290-5. PubMed ID: 18427113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations and Markov models.
    Plattner N; Noé F
    Nat Commun; 2015 Jul; 6():7653. PubMed ID: 26134632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trypsin-ligand binding free energy calculation with AMOEBA.
    Shi Y; Jiao D; Schnieders MJ; Ren P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2328-31. PubMed ID: 19965178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trypsin-ligand binding free energies from explicit and implicit solvent simulations with polarizable potential.
    Jiao D; Zhang J; Duke RE; Li G; Schnieders MJ; Ren P
    J Comput Chem; 2009 Aug; 30(11):1701-11. PubMed ID: 19399779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Boltzmann thermodynamic integration (NBTI) for macromolecular systems: relative free energy of binding of trypsin to benzamidine and benzylamine.
    Ota N; Stroupe C; Ferreira-da-Silva JM; Shah SA; Mares-Guia M; Brunger AT
    Proteins; 1999 Dec; 37(4):641-53. PubMed ID: 10651279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive Multilevel Splitting Method for Molecular Dynamics Calculation of Benzamidine-Trypsin Dissociation Time.
    Teo I; Mayne CG; Schulten K; Lelièvre T
    J Chem Theory Comput; 2016 Jun; 12(6):2983-9. PubMed ID: 27159059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water regulates the residence time of Benzamidine in Trypsin.
    Ansari N; Rizzi V; Parrinello M
    Nat Commun; 2022 Sep; 13(1):5438. PubMed ID: 36114175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer simulation of protein-ligand interactions: challenges and applications.
    Hassan SA; Gracia L; Vasudevan G; Steinbach PJ
    Methods Mol Biol; 2005; 305():451-92. PubMed ID: 15940011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations.
    Buch I; Giorgino T; De Fabritiis G
    Proc Natl Acad Sci U S A; 2011 Jun; 108(25):10184-9. PubMed ID: 21646537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic effects play a central role in cold adaptation of trypsin.
    Brandsdal BO; Smalås AO; Aqvist J
    FEBS Lett; 2001 Jun; 499(1-2):171-5. PubMed ID: 11418134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SEEKR: Simulation Enabled Estimation of Kinetic Rates, A Computational Tool to Estimate Molecular Kinetics and Its Application to Trypsin-Benzamidine Binding.
    Votapka LW; Jagger BR; Heyneman AL; Amaro RE
    J Phys Chem B; 2017 Apr; 121(15):3597-3606. PubMed ID: 28191969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Congeneric but still distinct: how closely related trypsin ligands exhibit different thermodynamic and structural properties.
    Brandt T; Holzmann N; Muley L; Khayat M; Wegscheid-Gerlach C; Baum B; Heine A; Hangauer D; Klebe G
    J Mol Biol; 2011 Feb; 405(5):1170-87. PubMed ID: 21111747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Effectively Can Adaptive Sampling Methods Capture Spontaneous Ligand Binding?
    Betz RM; Dror RO
    J Chem Theory Comput; 2019 Mar; 15(3):2053-2063. PubMed ID: 30645108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water access and ligand dissociation at the binding site of proteins.
    Yonetani Y
    J Chem Phys; 2018 Nov; 149(17):175102. PubMed ID: 30408972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multisecond ligand dissociation dynamics from atomistic simulations.
    Wolf S; Lickert B; Bray S; Stock G
    Nat Commun; 2020 Jun; 11(1):2918. PubMed ID: 32522984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding protein-ligand interactions: the price of protein flexibility.
    Rauh D; Klebe G; Stubbs MT
    J Mol Biol; 2004 Jan; 335(5):1325-41. PubMed ID: 14729347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic evaluation and modeling of proton and water exchange associated with benzamidine and berenil binding to beta-trypsin.
    Pereira MT; Silva-Alves JM; Martins-José A; Lopes JC; Santoro MM
    Braz J Med Biol Res; 2005 Nov; 38(11):1593-601. PubMed ID: 16258627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.