These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 31478719)
1. Regression models involving nonlinear effects with missing data: A sequential modeling approach using Bayesian estimation. Lüdtke O; Robitzsch A; West SG Psychol Methods; 2020 Apr; 25(2):157-181. PubMed ID: 31478719 [TBL] [Abstract][Full Text] [Related]
2. Analysis of Interactions and Nonlinear Effects with Missing Data: A Factored Regression Modeling Approach Using Maximum Likelihood Estimation. Lüdtke O; Robitzsch A; West SG Multivariate Behav Res; 2020; 55(3):361-381. PubMed ID: 31366241 [TBL] [Abstract][Full Text] [Related]
3. Multiple imputation of missing data in multilevel models with the R package mdmb: a flexible sequential modeling approach. Grund S; Lüdtke O; Robitzsch A Behav Res Methods; 2021 Dec; 53(6):2631-2649. PubMed ID: 34027594 [TBL] [Abstract][Full Text] [Related]
4. Moderation analysis with missing data in the predictors. Zhang Q; Wang L Psychol Methods; 2017 Dec; 22(4):649-666. PubMed ID: 27819434 [TBL] [Abstract][Full Text] [Related]
5. A model-based imputation procedure for multilevel regression models with random coefficients, interaction effects, and nonlinear terms. Enders CK; Du H; Keller BT Psychol Methods; 2020 Feb; 25(1):88-112. PubMed ID: 31259566 [TBL] [Abstract][Full Text] [Related]
6. Computing Bayes factors from data with missing values. Hoijtink H; Gu X; Mulder J; Rosseel Y Psychol Methods; 2019 Apr; 24(2):253-268. PubMed ID: 29999379 [TBL] [Abstract][Full Text] [Related]
7. An Investigation of Factored Regression Missing Data Methods for Multilevel Models with Cross-Level Interactions. Keller BT; Enders CK Multivariate Behav Res; 2023; 58(5):938-963. PubMed ID: 36602079 [TBL] [Abstract][Full Text] [Related]
8. Sequential BART for imputation of missing covariates. Xu D; Daniels MJ; Winterstein AG Biostatistics; 2016 Jul; 17(3):589-602. PubMed ID: 26980459 [TBL] [Abstract][Full Text] [Related]
10. Nonlinear multiple imputation for continuous covariate within semiparametric Cox model: application to HIV data in Senegal. Mbougua JB; Laurent C; Ndoye I; Delaporte E; Gwet H; Molinari N Stat Med; 2013 Nov; 32(26):4651-65. PubMed ID: 23712767 [TBL] [Abstract][Full Text] [Related]
11. Multiple imputation with non-additively related variables: Joint-modeling and approximations. Kim S; Belin TR; Sugar CA Stat Methods Med Res; 2018 Jun; 27(6):1683-1694. PubMed ID: 27647811 [TBL] [Abstract][Full Text] [Related]
12. Estimating causal effects in linear regression models with observational data: The instrumental variables regression model. Maydeu-Olivares A; Shi D; Fairchild AJ Psychol Methods; 2020 Apr; 25(2):243-258. PubMed ID: 31294588 [TBL] [Abstract][Full Text] [Related]
13. A nonparametric multiple imputation approach for missing categorical data. Zhou M; He Y; Yu M; Hsu CH BMC Med Res Methodol; 2017 Jun; 17(1):87. PubMed ID: 28587662 [TBL] [Abstract][Full Text] [Related]
14. Using phantom variables in structural equation modeling to assess model sensitivity to external misspecification. Harring JR; McNeish DM; Hancock GR Psychol Methods; 2017 Dec; 22(4):616-631. PubMed ID: 29265846 [TBL] [Abstract][Full Text] [Related]
15. Bivariate zero-inflated regression for count data: a Bayesian approach with application to plant counts. Majumdar A; Gries C Int J Biostat; 2010; 6(1):Article 27. PubMed ID: 21969981 [TBL] [Abstract][Full Text] [Related]