These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 31478862)
1. Comparing EMG-Based Human-Machine Interfaces for Estimating Continuous, Coordinated Movements. Pan L; Crouch DL; Huang H IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2145-2154. PubMed ID: 31478862 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous and Proportional Control of Wrist and Hand Movements Based on a Neural-Driven Musculoskeletal Model. Li J; Yue S; Pan L IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3999-4007. PubMed ID: 37815968 [TBL] [Abstract][Full Text] [Related]
3. Lumped-parameter electromyogram-driven musculoskeletal hand model: A potential platform for real-time prosthesis control. Crouch DL; Huang H J Biomech; 2016 Dec; 49(16):3901-3907. PubMed ID: 27814972 [TBL] [Abstract][Full Text] [Related]
4. Myoelectric Control Based on a Generic Musculoskeletal Model: Toward a Multi-User Neural-Machine Interface. Pan L; Crouch DL; Huang H IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1435-1442. PubMed ID: 29985153 [TBL] [Abstract][Full Text] [Related]
5. Musculoskeletal model predicts multi-joint wrist and hand movement from limited EMG control signals. Crouch DL; He Huang Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1132-5. PubMed ID: 26736465 [TBL] [Abstract][Full Text] [Related]
6. Simple EMG-driven musculoskeletal model enables consistent control performance during path tracing tasks. Crouch D; He Huang Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1-4. PubMed ID: 28268266 [TBL] [Abstract][Full Text] [Related]
7. Musculoskeletal model-based control interface mimics physiologic hand dynamics during path tracing task. Crouch DL; Huang HH J Neural Eng; 2017 Jun; 14(3):036008. PubMed ID: 28220759 [TBL] [Abstract][Full Text] [Related]
8. Comparing Surface and Intramuscular Electromyography for Simultaneous and Proportional Control Based on a Musculoskeletal Model: A Pilot Study. Crouch DL; Pan L; Filer W; Stallings JW; Huang H IEEE Trans Neural Syst Rehabil Eng; 2018 Sep; 26(9):1735-1744. PubMed ID: 30047893 [TBL] [Abstract][Full Text] [Related]
9. IMU-Based Wrist Rotation Control of a Transradial Myoelectric Prosthesis. Bennett DA; Goldfarb M IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):419-427. PubMed ID: 28320673 [TBL] [Abstract][Full Text] [Related]
10. Real-time simultaneous myoelectric control by transradial amputees using linear and probability-weighted regression. Smith LH; Kuiken TA; Hargrove LJ Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1119-23. PubMed ID: 26736462 [TBL] [Abstract][Full Text] [Related]
11. Comparing Reinforcement Learning Agents and Supervised Learning Neural Networks for EMG-Based Decoding of Continuous Movements. Berman J; Hinson R; Huang H Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6297-6300. PubMed ID: 34892553 [TBL] [Abstract][Full Text] [Related]
12. Predicting wrist kinematics from motor unit discharge timings for the control of active prostheses. Kapelner T; Vujaklija I; Jiang N; Negro F; Aszmann OC; Principe J; Farina D J Neuroeng Rehabil; 2019 Apr; 16(1):47. PubMed ID: 30953528 [TBL] [Abstract][Full Text] [Related]
13. A linear model for simultaneously and proportionally estimating wrist kinematics from emg during mirrored bilateral movements. Pan L; Sheng X; Zhang D; Zhu X Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4593-6. PubMed ID: 24110757 [TBL] [Abstract][Full Text] [Related]
14. A musculoskeletal model driven by muscle synergy-derived excitations for hand and wrist movements. Zhao J; Yu Y; Wang X; Ma S; Sheng X; Zhu X J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 34986472 [No Abstract] [Full Text] [Related]
15. EMG-based simultaneous and proportional estimation of wrist/hand kinematics in uni-lateral trans-radial amputees. Jiang N; Vest-Nielsen JL; Muceli S; Farina D J Neuroeng Rehabil; 2012 Jun; 9():42. PubMed ID: 22742707 [TBL] [Abstract][Full Text] [Related]
16. Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model. Ngeo JG; Tamei T; Shibata T J Neuroeng Rehabil; 2014 Aug; 11():122. PubMed ID: 25123024 [TBL] [Abstract][Full Text] [Related]
17. Estimation of wrist angle from sonomyography using support vector machine and artificial neural network models. Xie HB; Zheng YP; Guo JY; Chen X; Shi J Med Eng Phys; 2009 Apr; 31(3):384-91. PubMed ID: 18586548 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of-freedom. Muceli S; Farina D IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):371-8. PubMed ID: 22180516 [TBL] [Abstract][Full Text] [Related]
19. Resolving the effect of wrist position on myoelectric pattern recognition control. Adewuyi AA; Hargrove LJ; Kuiken TA J Neuroeng Rehabil; 2017 May; 14(1):39. PubMed ID: 28472991 [TBL] [Abstract][Full Text] [Related]
20. Decoding of Multiple Wrist and Hand Movements Using a Transient EMG Classifier. D'Accolti D; Dejanovic K; Cappello L; Mastinu E; Ortiz-Catalan M; Cipriani C IEEE Trans Neural Syst Rehabil Eng; 2023; 31():208-217. PubMed ID: 36327175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]