These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 31478863)
1. Development of a Virtual Floor Maze Test - Effects of Distal Visual Cues and Correlations With Executive Function in Healthy Adults. Martelli D; Prado A; Xia B; Verghese J; Agrawal SK IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2229-2236. PubMed ID: 31478863 [TBL] [Abstract][Full Text] [Related]
2. Cognitive correlates of spatial navigation: Associations between executive functioning and the virtual Morris Water Task. Korthauer LE; Nowak NT; Frahmand M; Driscoll I Behav Brain Res; 2017 Jan; 317():470-478. PubMed ID: 27720743 [TBL] [Abstract][Full Text] [Related]
3. Acute stress switches spatial navigation strategy from egocentric to allocentric in a virtual Morris water maze. van Gerven DJH; Ferguson T; Skelton RW Neurobiol Learn Mem; 2016 Jul; 132():29-39. PubMed ID: 27174311 [TBL] [Abstract][Full Text] [Related]
4. Spatial Navigation in the Elderly with Alzheimer's Disease: A Cross-Sectional Study. Zanco M; Plácido J; Marinho V; Ferreira JV; de Oliveira F; Monteiro-Junior R; Barca M; Engedal K; Laks J; Deslandes A J Alzheimers Dis; 2018; 66(4):1683-1694. PubMed ID: 30507580 [TBL] [Abstract][Full Text] [Related]
5. Sex differences in virtual navigation influenced by scale and navigation experience. Padilla LM; Creem-Regehr SH; Stefanucci JK; Cashdan EA Psychon Bull Rev; 2017 Apr; 24(2):582-590. PubMed ID: 27714666 [TBL] [Abstract][Full Text] [Related]
6. NavWell: A simplified virtual-reality platform for spatial navigation and memory experiments. Commins S; Duffin J; Chaves K; Leahy D; Corcoran K; Caffrey M; Keenan L; Finan D; Thornberry C Behav Res Methods; 2020 Jun; 52(3):1189-1207. PubMed ID: 31637666 [TBL] [Abstract][Full Text] [Related]
7. Multimodal immersive trail making-virtual reality paradigm to study cognitive-motor interactions. Plotnik M; Ben-Gal O; Doniger GM; Gottlieb A; Bahat Y; Cohen M; Kimel-Naor S; Zeilig G; Beeri MS J Neuroeng Rehabil; 2021 May; 18(1):82. PubMed ID: 34001179 [TBL] [Abstract][Full Text] [Related]
8. Detecting allocentric and egocentric navigation deficits in patients with schizophrenia and bipolar disorder using virtual reality. Mohammadi A; Hesami E; Kargar M; Shams J Neuropsychol Rehabil; 2018 Apr; 28(3):398-415. PubMed ID: 28880126 [TBL] [Abstract][Full Text] [Related]
9. Aging and spatial cues influence the updating of navigational memories. Merhav M; Wolbers T Sci Rep; 2019 Aug; 9(1):11469. PubMed ID: 31391574 [TBL] [Abstract][Full Text] [Related]
10. Gender, videogames and navigation in virtual space. de Castell S; Larios H; Jenson J Acta Psychol (Amst); 2019 Aug; 199():102895. PubMed ID: 31377309 [TBL] [Abstract][Full Text] [Related]
11. Using virtual reality to distinguish subjects with multiple- but not single-domain amnestic mild cognitive impairment from normal elderly subjects. Mohammadi A; Kargar M; Hesami E Psychogeriatrics; 2018 Mar; 18(2):132-142. PubMed ID: 29409155 [TBL] [Abstract][Full Text] [Related]
12. Virtual environment navigation tasks and the assessment of cognitive deficits in individuals with brain injury. Livingstone SA; Skelton RW Behav Brain Res; 2007 Dec; 185(1):21-31. PubMed ID: 17727970 [TBL] [Abstract][Full Text] [Related]
13. The Key of the Maze: The role of mental imagery and cognitive flexibility in navigational planning. Bocchi A; Carrieri M; Lancia S; Quaresima V; Piccardi L Neurosci Lett; 2017 Jun; 651():146-150. PubMed ID: 28495273 [TBL] [Abstract][Full Text] [Related]
14. Introducing a new age-and-cognition-sensitive measurement for assessing spatial orientation using a landmark-less virtual reality navigational task. Ranjbar Pouya O; Byagowi A; Kelly DM; Moussavi Z Q J Exp Psychol (Hove); 2017 Jul; 70(7):1406-1419. PubMed ID: 27156658 [TBL] [Abstract][Full Text] [Related]
15. Spatial navigation from same and different directions: The role of executive functions, memory and attention in adults with autism spectrum disorder. Ring M; Gaigg SB; de Condappa O; Wiener JM; Bowler DM Autism Res; 2018 May; 11(5):798-810. PubMed ID: 29405653 [TBL] [Abstract][Full Text] [Related]
16. New software dedicated to virtual mazes for human cognitive investigations. Machado ML; Lefèvre N; Philoxene B; Le Gall A; Madeleine S; Fleury P; Smith PF; Besnard S J Neurosci Methods; 2019 Nov; 327():108388. PubMed ID: 31408650 [TBL] [Abstract][Full Text] [Related]
17. The contribution of virtual reality to the diagnosis of spatial navigation disorders and to the study of the role of navigational aids: A systematic literature review. Cogné M; Taillade M; N'Kaoua B; Tarruella A; Klinger E; Larrue F; Sauzéon H; Joseph PA; Sorita E Ann Phys Rehabil Med; 2017 Jun; 60(3):164-176. PubMed ID: 27017533 [TBL] [Abstract][Full Text] [Related]
18. Stress affects navigation strategies in immersive virtual reality. Varshney A; Munns ME; Kasowski J; Zhou M; He C; Grafton ST; Giesbrecht B; Hegarty M; Beyeler M Sci Rep; 2024 Mar; 14(1):5949. PubMed ID: 38467699 [TBL] [Abstract][Full Text] [Related]
19. The potential of virtual reality for spatial navigation research across the adult lifespan. Diersch N; Wolbers T J Exp Biol; 2019 Feb; 222(Pt Suppl 1):. PubMed ID: 30728232 [TBL] [Abstract][Full Text] [Related]
20. Path Complexity in Virtual Water Maze Navigation: Differential Associations with Age, Sex, and Regional Brain Volume. Daugherty AM; Yuan P; Dahle CL; Bender AR; Yang Y; Raz N Cereb Cortex; 2015 Sep; 25(9):3122-31. PubMed ID: 24860019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]