These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 31478870)

  • 1. A Micropower Motion Artifact Estimator for Input Dynamic Range Reduction in Wearable ECG Acquisition Systems.
    Pholpoke B; Songthawornpong T; Wattanapanitch W
    IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):1021-1035. PubMed ID: 31478870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive Motion Artifact Reduction in Wearable ECG Measurements Using Impedance Pneumography Signal.
    An X; Liu Y; Zhao Y; Lu S; Stylios GK; Liu Q
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35897997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction in the Motion Artifacts in Noncontact ECG Measurements Using a Novel Designed Electrode Structure.
    Ding J; Tang Y; Chang R; Li Y; Zhang L; Yan F
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 2.64- μW 71-dB SNDR Discrete-Time Signal-Folding Amplifier for Reducing ADC's Resolution Requirement in Wearable ECG Acquisition Systems.
    Ratametha C; Tepwimonpetkun S; Wattanapanitch W
    IEEE Trans Biomed Circuits Syst; 2020 Feb; 14(1):48-64. PubMed ID: 31796416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 2.55 NEF 76 dB CMRR DC-Coupled Fully Differential Difference Amplifier Based Analog Front End for Wearable Biomedical Sensors.
    Zhao Y; Shang Z; Lian Y
    IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):918-926. PubMed ID: 31247560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A micropower dry-electrode ECG preamplifier.
    Burke MJ; Gleeson DT
    IEEE Trans Biomed Eng; 2000 Feb; 47(2):155-62. PubMed ID: 10721622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A TDM-Based 16-Channel AFE ASIC With Enhanced System-Level CMRR for Wearable EEG Recording With Dry Electrodes.
    Tang T; Goh WL; Yao L; Gao Y
    IEEE Trans Biomed Circuits Syst; 2020 Jun; 14(3):516-524. PubMed ID: 32167908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Wavelet Adaptive Cancellation Algorithm Based on Multi-Inertial Sensors for the Reduction of Motion Artifacts in Ambulatory ECGs.
    Xiong F; Chen D; Huang M
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32054066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a Low-Power Ground-Free Analog Front End for ECG Acquisition.
    Watcharapongvinit K; Yongpanich I; Wattanapanitch W
    IEEE Trans Biomed Circuits Syst; 2023 Apr; 17(2):299-311. PubMed ID: 37027597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 160 μA biopotential acquisition IC with fully integrated IA and motion artifact suppression.
    Van Helleputte N; Kim S; Kim H; Kim JP; Van Hoof C; Yazicioglu RF
    IEEE Trans Biomed Circuits Syst; 2012 Dec; 6(6):552-61. PubMed ID: 23853256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 0.67 μV-IIRN super-T Ω-Z
    Dabbaghian A; El-Hajj Y; Ghalamboran M; Grau G; Kassiri H
    IEEE Trans Biomed Circuits Syst; 2024 Feb; 18(1):3-15. PubMed ID: 37535484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrode Humidification Design for Artifact Reduction in Capacitive ECG Measurements.
    Tang Y; Chang R; Zhang L; Yan F; Ma H; Bu X
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32570924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 400 GΩ Input-Impedance Active Electrode for Non-Contact Capacitively Coupled ECG Acquisition With Large Linear-Input-Range and High CM-Interference-Tolerance.
    Chen M; Chun HS; Castro ID; Torfs T; Lin Q; van Hoof C; Wang G; Lian Y; van Helleputte N
    IEEE Trans Biomed Circuits Syst; 2019 Apr; 13(2):376-386. PubMed ID: 30703036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An 8-Channel Ambulatory EEG Recording IC With In-Channel Fully-Analog Real-Time Motion Artifact Extraction and Removal.
    Dabbaghian A; Kassiri H
    IEEE Trans Biomed Circuits Syst; 2023 Oct; 17(5):999-1009. PubMed ID: 37363842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new particle filter algorithm filtering motion artifact noise for clean electrocardiogram signals in wearable health monitoring system.
    Ma M; Du M; Feng Q; Xiahou S
    Rev Sci Instrum; 2024 Jan; 95(1):. PubMed ID: 38197770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pressure and padding on motion artifact of textile electrodes.
    Cömert A; Honkala M; Hyttinen J
    Biomed Eng Online; 2013 Apr; 12():26. PubMed ID: 23565970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosignal integrated circuit with simultaneous acquisition of ECG and PPG for wearable healthcare applications.
    Kim H; Park Y; Ko Y; Mun Y; Lee S; Ko H
    Technol Health Care; 2018; 26(1):3-9. PubMed ID: 29060948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Channel Biopotential Acquisition System Using Frequency-Division Multiplexing With Cable Motion Artifact Suppression.
    Kim J; Ouh H; Johnston ML
    IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1419-1429. PubMed ID: 34847042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Parylene-Coated Microneedle Array Electrode for Wearable ECG Device.
    Satti AT; Park J; Park J; Kim H; Cho S
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32932862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Micropower Chopper CBIA Using DSL-Embedded Input Stage With 0.4 V EO Tolerance for Dry-Electrode Biopotential Recording.
    Thanapitak S; Surakampontorn W; Sawigun C
    IEEE Trans Biomed Circuits Syst; 2023 Jun; 17(3):458-469. PubMed ID: 37023150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.