These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 31478880)
1. A Flexible Wearable Device for Measurement of Cardiac, Electrodermal, and Motion Parameters in Mental Healthcare Applications. Rosa BMG; Yang GZ IEEE J Biomed Health Inform; 2019 Nov; 23(6):2276-2285. PubMed ID: 31478880 [TBL] [Abstract][Full Text] [Related]
2. Wearable Ring-Shaped Biomedical Device for Physiological Monitoring through Finger-Based Acquisition of Electrocardiographic, Photoplethysmographic, and Galvanic Skin Response Signals: Design and Preliminary Measurements. Volpes G; Valenti S; Genova G; BarĂ C; Parisi A; Faes L; Busacca A; Pernice R Biosensors (Basel); 2024 Apr; 14(4):. PubMed ID: 38667198 [TBL] [Abstract][Full Text] [Related]
3. A machine-learning approach for stress detection using wearable sensors in free-living environments. Abd Al-Alim M; Mubarak R; M Salem N; Sadek I Comput Biol Med; 2024 Sep; 179():108918. PubMed ID: 39029434 [TBL] [Abstract][Full Text] [Related]
4. Accuracy of Consumer Wearable Heart Rate Measurement During an Ecologically Valid 24-Hour Period: Intraindividual Validation Study. Nelson BW; Allen NB JMIR Mhealth Uhealth; 2019 Mar; 7(3):e10828. PubMed ID: 30855232 [TBL] [Abstract][Full Text] [Related]
5. Objective stress monitoring based on wearable sensors in everyday settings. Han HJ; Labbaf S; Borelli JL; Dutt N; Rahmani AM J Med Eng Technol; 2020 May; 44(4):177-189. PubMed ID: 32589065 [TBL] [Abstract][Full Text] [Related]
6. One-Channel Wearable Mental Stress State Monitoring System. Abdul Kader L; Al-Shargie F; Tariq U; Al-Nashash H Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205067 [TBL] [Abstract][Full Text] [Related]
7. Comparative Evaluation of the Autonomic Response to Cognitive and Sensory Stimulations through Wearable Sensors. Tonacci A; Billeci L; Burrai E; Sansone F; Conte R Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31717848 [TBL] [Abstract][Full Text] [Related]
8. A Wearable Multi-Modal Bio-Sensing System Towards Real-World Applications. Siddharth ; Patel AN; Jung TP; Sejnowski TJ IEEE Trans Biomed Eng; 2019 Apr; 66(4):1137-1147. PubMed ID: 30188809 [TBL] [Abstract][Full Text] [Related]
9. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device? Lui J; Menon C Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354 [TBL] [Abstract][Full Text] [Related]
10. Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes. Biagetti G; Crippa P; Falaschetti L; Orcioni S; Turchetti C Biomed Eng Online; 2018 Nov; 17(Suppl 1):132. PubMed ID: 30458783 [TBL] [Abstract][Full Text] [Related]
11. IoT-Based Heartbeat Rate-Monitoring Device Powered by Harvested Kinetic Energy. Nekui OD; Wang W; Liu C; Wang Z; Ding B Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39001027 [TBL] [Abstract][Full Text] [Related]
12. Design and Validation of a Multimodal Wearable Device for Simultaneous Collection of Electrocardiogram, Electromyogram, and Electrodermal Activity. McNaboe R; Beardslee L; Kong Y; Smith BN; Chen IP; Posada-Quintero HF; Chon KH Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433449 [TBL] [Abstract][Full Text] [Related]
13. Toward Dynamically Adaptive Simulation: Multimodal Classification of User Expertise Using Wearable Devices. Ross K; Sarkar P; Rodenburg D; Ruberto A; Hungler P; Szulewski A; Howes D; Etemad A Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31581563 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of a Wearable Device to Determine Cardiorespiratory Parameters From Surface Diaphragm Electromyography. Rafols-de-Urquia M; Estrada L; Estevez-Piorno J; Sarlabous L; Jane R; Torres A IEEE J Biomed Health Inform; 2019 Sep; 23(5):1964-1971. PubMed ID: 30530375 [TBL] [Abstract][Full Text] [Related]
15. A Wearable Multifunctional Pulse Monitor Using Thermosensation-Based Flexible Sensors. Fu Y; Zhao S; Zhu R IEEE Trans Biomed Eng; 2019 May; 66(5):1412-1421. PubMed ID: 30295608 [TBL] [Abstract][Full Text] [Related]
16. A novel acquisition platform for long-term breathing frequency monitoring based on inertial measurement units. Cesareo A; Biffi E; Cuesta-Frau D; D'Angelo MG; Aliverti A Med Biol Eng Comput; 2020 Apr; 58(4):785-804. PubMed ID: 32002753 [TBL] [Abstract][Full Text] [Related]
17. Highly wearable galvanic skin response sensor using flexible and conductive polymer foam. Kim J; Kwon S; Seo S; Park K Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6631-4. PubMed ID: 25571516 [TBL] [Abstract][Full Text] [Related]
18. A Multimodal Wearable System for Continuous and Real-Time Breathing Pattern Monitoring During Daily Activity. Qi W; Aliverti A IEEE J Biomed Health Inform; 2020 Aug; 24(8):2199-2207. PubMed ID: 31902783 [TBL] [Abstract][Full Text] [Related]
19. Objective detection of chronic stress using physiological parameters. Al Abdi RM; Alhitary AE; Abdul Hay EW; Al-Bashir AK Med Biol Eng Comput; 2018 Dec; 56(12):2273-2286. PubMed ID: 29911251 [TBL] [Abstract][Full Text] [Related]
20. Continuous Stress Detection Using Wearable Sensors in Real Life: Algorithmic Programming Contest Case Study. Can YS; Chalabianloo N; Ekiz D; Ersoy C Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31003456 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]