These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 31478953)
1. Correlating Structural and Functional Damage in Glaucoma. Torres LA; Hatanaka M J Glaucoma; 2019 Dec; 28(12):1079-1085. PubMed ID: 31478953 [TBL] [Abstract][Full Text] [Related]
2. Diffuse glaucomatous structural and functional damage in the hemifield without significant pattern loss. Grewal DS; Sehi M; Greenfield DS Arch Ophthalmol; 2009 Nov; 127(11):1442-8. PubMed ID: 19901209 [TBL] [Abstract][Full Text] [Related]
3. Structure-function relationships in normal and glaucomatous eyes determined by time- and spectral-domain optical coherence tomography. Lee JR; Jeoung JW; Choi J; Choi JY; Park KH; Kim YD Invest Ophthalmol Vis Sci; 2010 Dec; 51(12):6424-30. PubMed ID: 20592233 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of Retinal Nerve Fiber Layer Thickness and Ganglion Cell Complex Progression Rates in Healthy, Ocular Hypertensive, and Glaucoma Eyes With the Avanti RTVue-XR Optical Coherence Tomograph Based on 5-Year Follow-up. Holló G; Zhou Q J Glaucoma; 2016 Oct; 25(10):e905-e909. PubMed ID: 26950575 [TBL] [Abstract][Full Text] [Related]
5. Pulsar perimetry in the diagnosis of early glaucoma. Gonzalez de la Rosa M Am J Ophthalmol; 2011 Sep; 152(3):500-501. PubMed ID: 21855674 [No Abstract] [Full Text] [Related]
6. Studying the role of 10-2 visual field test in different stages of glaucoma. Tomairek RH; Aboud SA; Hassan M; Mohamed AH Eur J Ophthalmol; 2020 Jul; 30(4):706-713. PubMed ID: 30871370 [TBL] [Abstract][Full Text] [Related]
7. A combined index of structure and function for staging glaucomatous damage. Medeiros FA; Lisboa R; Weinreb RN; Girkin CA; Liebmann JM; Zangwill LM Arch Ophthalmol; 2012 May; 130(5):E1-10. PubMed ID: 22826832 [TBL] [Abstract][Full Text] [Related]
8. Ability of 24-2C and 24-2 Grids to Identify Central Visual Field Defects and Structure-Function Concordance in Glaucoma and Suspects. Phu J; Kalloniatis M Am J Ophthalmol; 2020 Nov; 219():317-331. PubMed ID: 32621896 [TBL] [Abstract][Full Text] [Related]
9. Three-dimensional Neuroretinal Rim Thickness and Visual Fields in Glaucoma: A Broken-stick Model. Liu WW; McClurkin M; Tsikata E; Hui PC; Elze T; Celebi ARC; Khoueir Z; Lee R; Shieh E; Simavli H; Que C; Guo R; de Boer J; Chen TC J Glaucoma; 2020 Oct; 29(10):952-963. PubMed ID: 32925518 [TBL] [Abstract][Full Text] [Related]
10. Temporal Wedge Defects in Glaucoma: Structure/Function Correlation With Threshold Automated Perimetry of the Full Visual Field. Wall M; Lee EJ; Wanzek RJ; Chong LX; Turpin A J Glaucoma; 2020 Mar; 29(3):191-197. PubMed ID: 32108691 [TBL] [Abstract][Full Text] [Related]
11. Correlation of structural retinal nerve fibre layer parameters and functional measures using Heidelberg Retinal Tomography and Spectralis spectral domain optical coherence tomography at different levels of glaucoma severity. Leaney J; Healey PR; Lee M; Graham SL Clin Exp Ophthalmol; 2012 Nov; 40(8):802-12. PubMed ID: 22594488 [TBL] [Abstract][Full Text] [Related]
12. The Association Between Clinical Features Seen on Fundus Photographs and Glaucomatous Damage Detected on Visual Fields and Optical Coherence Tomography Scans. Alhadeff PA; De Moraes CG; Chen M; Raza AS; Ritch R; Hood DC J Glaucoma; 2017 May; 26(5):498-504. PubMed ID: 28333890 [TBL] [Abstract][Full Text] [Related]
13. Pre-perimetric Open Angle Glaucoma with Young Age of Onset: Natural Clinical Course and Risk Factors for Progression. Bak E; Kim YW; Ha A; Kim YK; Park KH; Jeoung JW Am J Ophthalmol; 2020 Aug; 216():121-131. PubMed ID: 32222365 [TBL] [Abstract][Full Text] [Related]
14. Prediction of Glaucoma Progression with Structural Parameters: Comparison of Optical Coherence Tomography and Clinical Disc Parameters. Daneshvar R; Yarmohammadi A; Alizadeh R; Henry S; Law SK; Caprioli J; Nouri-Mahdavi K Am J Ophthalmol; 2019 Dec; 208():19-29. PubMed ID: 31247169 [TBL] [Abstract][Full Text] [Related]
15. Difference in correspondence between visual field defect and inner macular layer thickness measured using three types of spectral-domain OCT instruments. Ueda K; Kanamori A; Akashi A; Kawaka Y; Yamada Y; Nakamura M Jpn J Ophthalmol; 2015 Jan; 59(1):55-64. PubMed ID: 25377494 [TBL] [Abstract][Full Text] [Related]
16. Clinical Recognition of Glaucomatous Cupping. Kirsch RE; Anderson DR Am J Ophthalmol; 2018 Sep; 193():xxviii-xxxviii. PubMed ID: 30144901 [No Abstract] [Full Text] [Related]
17. Can Macula and Optic Nerve Head Parameters Detect Glaucoma Progression in Eyes with Advanced Circumpapillary Retinal Nerve Fiber Layer Damage? Lavinsky F; Wu M; Schuman JS; Lucy KA; Liu M; Song Y; Fallon J; de Los Angeles Ramos Cadena M; Ishikawa H; Wollstein G Ophthalmology; 2018 Dec; 125(12):1907-1912. PubMed ID: 29934267 [TBL] [Abstract][Full Text] [Related]
18. Predicting Development of Glaucomatous Visual Field Conversion Using Baseline Fourier-Domain Optical Coherence Tomography. Zhang X; Loewen N; Tan O; Greenfield DS; Schuman JS; Varma R; Huang D; Am J Ophthalmol; 2016 Mar; 163():29-37. PubMed ID: 26627918 [TBL] [Abstract][Full Text] [Related]
19. The Relationship Between Optic Disc and Retinal Artery Position and Glaucomatous Visual Field Progression. Fujino Y; Asaoka R; Murata H; Yamashita T Invest Ophthalmol Vis Sci; 2021 Sep; 62(12):6. PubMed ID: 34499706 [TBL] [Abstract][Full Text] [Related]
20. Relationship between visual field sensitivity and macular ganglion cell complex thickness as measured by spectral-domain optical coherence tomography. Cho JW; Sung KR; Lee S; Yun SC; Kang SY; Choi J; Na JH; Lee Y; Kook MS Invest Ophthalmol Vis Sci; 2010 Dec; 51(12):6401-7. PubMed ID: 20631238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]