BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31479198)

  • 1. Identification of Compounds That Interfere with High-Throughput Screening Assay Technologies.
    David L; Walsh J; Sturm N; Feierberg I; Nissink JWM; Chen H; Bajorath J; Engkvist O
    ChemMedChem; 2019 Oct; 14(20):1795-1802. PubMed ID: 31479198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hit Dexter: A Machine-Learning Model for the Prediction of Frequent Hitters.
    Stork C; Wagner J; Friedrich NO; de Bruyn Kops C; Šícho M; Kirchmair J
    ChemMedChem; 2018 Mar; 13(6):564-571. PubMed ID: 29285887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Small-Molecule Reactivity Identifies Promiscuous Bioactive Compounds.
    Matlock MK; Hughes TB; Dahlin JL; Swamidass SJ
    J Chem Inf Model; 2018 Aug; 58(8):1483-1500. PubMed ID: 29990427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hit Dexter 2.0: Machine-Learning Models for the Prediction of Frequent Hitters.
    Stork C; Chen Y; Šícho M; Kirchmair J
    J Chem Inf Model; 2019 Mar; 59(3):1030-1043. PubMed ID: 30624935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How to Triage PAINS-Full Research.
    Dahlin JL; Walters MA
    Assay Drug Dev Technol; 2016 Apr; 14(3):168-74. PubMed ID: 26496388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays.
    Baell JB; Holloway GA
    J Med Chem; 2010 Apr; 53(7):2719-40. PubMed ID: 20131845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Accurate Filters to Flag Frequent Hitters in AlphaScreen Assays by Suggesting their Mechanism.
    Ghosh D; Koch U; Hadian K; Sattler M; Tetko IV
    Mol Inform; 2022 Mar; 41(3):e2100151. PubMed ID: 34676998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a virtual screening method for identification of "frequent hitters" in compound libraries.
    Roche O; Schneider P; Zuegge J; Guba W; Kansy M; Alanine A; Bleicher K; Danel F; Gutknecht EM; Rogers-Evans M; Neidhart W; Stalder H; Dillon M; Sjögren E; Fotouhi N; Gillespie P; Goodnow R; Harris W; Jones P; Taniguchi M; Tsujii S; von der Saal W; Zimmermann G; Schneider G
    J Med Chem; 2002 Jan; 45(1):137-42. PubMed ID: 11754585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Small-Molecule Frequent Hitters of Glutathione S-Transferase-Glutathione Interaction.
    Brenke JK; Salmina ES; Ringelstetter L; Dornauer S; Kuzikov M; Rothenaigner I; Schorpp K; Giehler F; Gopalakrishnan J; Kieser A; Gul S; Tetko IV; Hadian K
    J Biomol Screen; 2016 Jul; 21(6):596-607. PubMed ID: 27044684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuisance Compounds, PAINS Filters, and Dark Chemical Matter in the GSK HTS Collection.
    Chakravorty SJ; Chan J; Greenwood MN; Popa-Burke I; Remlinger KS; Pickett SD; Green DVS; Fillmore MC; Dean TW; Luengo JI; Macarrón R
    SLAS Discov; 2018 Jul; 23(6):532-545. PubMed ID: 29699447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lies and Liabilities: Computational Assessment of High-Throughput Screening Hits to Identify Artifact Compounds.
    Alves VM; Yasgar A; Wellnitz J; Rai G; Rath M; Braga RC; Capuzzi SJ; Simeonov A; Muratov EN; Zakharov AV; Tropsha A
    J Med Chem; 2023 Sep; 66(18):12828-12839. PubMed ID: 37677128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmarking the mechanisms of frequent hitters: limitation of PAINS alerts.
    Yang ZY; Yang ZJ; He JH; Lu AP; Liu S; Hou TJ; Cao DS
    Drug Discov Today; 2021 Jun; 26(6):1353-1358. PubMed ID: 33581116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical models for identifying frequent hitters in high throughput screening.
    Goodwin S; Shahtahmassebi G; Hanley QS
    Sci Rep; 2020 Oct; 10(1):17200. PubMed ID: 33057035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scopy: an integrated negative design python library for desirable HTS/VS database design.
    Yang ZY; Yang ZJ; Lu AP; Hou TJ; Cao DS
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32892221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing HTS performance using BioAssay Ontology: screening and analysis of a bacterial phospho-N-acetylmuramoyl-pentapeptide translocase campaign.
    Moberg A; Zander Balderud L; Hansson E; Boyd H
    Assay Drug Dev Technol; 2014; 12(9-10):506-13. PubMed ID: 25415593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Small-Molecule Frequent Hitters from AlphaScreen High-Throughput Screens.
    Schorpp K; Rothenaigner I; Salmina E; Reinshagen J; Low T; Brenke JK; Gopalakrishnan J; Tetko IV; Gul S; Hadian K
    J Biomol Screen; 2014 Jun; 19(5):715-26. PubMed ID: 24371213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MF-PCBA: Multifidelity High-Throughput Screening Benchmarks for Drug Discovery and Machine Learning.
    Buterez D; Janet JP; Kiddle SJ; Liò P
    J Chem Inf Model; 2023 May; 63(9):2667-2678. PubMed ID: 37058588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring Activity Profiles of PAINS and Their Structural Context in Target-Ligand Complexes.
    Siramshetty VB; Preissner R; Gohlke BO
    J Chem Inf Model; 2018 Sep; 58(9):1847-1857. PubMed ID: 30105913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Analysis and Identification of False Positive Hits in Luciferase-Based Assays.
    Yang ZY; Dong J; Yang ZJ; Lu AP; Hou TJ; Cao DS
    J Chem Inf Model; 2020 Apr; 60(4):2031-2043. PubMed ID: 32202787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Throughput Screening to Predict Chemical-Assay Interference.
    Borrel A; Huang R; Sakamuru S; Xia M; Simeonov A; Mansouri K; Houck KA; Judson RS; Kleinstreuer NC
    Sci Rep; 2020 Mar; 10(1):3986. PubMed ID: 32132587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.