These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31479198)

  • 21. Predictive Models for Human Organ Toxicity Based on
    Xu T; Ngan DK; Ye L; Xia M; Xie HQ; Zhao B; Simeonov A; Huang R
    Chem Res Toxicol; 2020 Mar; 33(3):731-741. PubMed ID: 32077278
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comment on The Ecstasy and Agony of Assay Interference Compounds.
    Kenny PW
    J Chem Inf Model; 2017 Nov; 57(11):2640-2645. PubMed ID: 29048168
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using machine learning methods to predict experimental high-throughput screening data.
    Mballo C; Makarenkov V
    Comb Chem High Throughput Screen; 2010 Jun; 13(5):430-41. PubMed ID: 20236062
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BioAssay ontology annotations facilitate cross-analysis of diverse high-throughput screening data sets.
    Schürer SC; Vempati U; Smith R; Southern M; Lemmon V
    J Biomol Screen; 2011 Apr; 16(4):415-26. PubMed ID: 21471461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Data-Driven Derivation of an "Informer Compound Set" for Improved Selection of Active Compounds in High-Throughput Screening.
    Paricharak S; IJzerman AP; Jenkins JL; Bender A; Nigsch F
    J Chem Inf Model; 2016 Sep; 56(9):1622-30. PubMed ID: 27487177
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using the BioAssay Ontology for analyzing high-throughput screening data.
    Zander Balderud L; Murray D; Larsson N; Vempati U; Schürer SC; Bjäreland M; Engkvist O
    J Biomol Screen; 2015 Mar; 20(3):402-15. PubMed ID: 25512330
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Locating sweet spots for screening hits and evaluating pan-assay interference filters from the performance analysis of two lead-like libraries.
    Mok NY; Maxe S; Brenk R
    J Chem Inf Model; 2013 Mar; 53(3):534-44. PubMed ID: 23451880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of Bioactivity Profile-Based Fingerprints for Building Machine Learning Models.
    Sturm N; Sun J; Vandriessche Y; Mayr A; Klambauer G; Carlsson L; Engkvist O; Chen H
    J Chem Inf Model; 2019 Mar; 59(3):962-972. PubMed ID: 30408959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantification of frequent-hitter behavior based on historical high-throughput screening data.
    M Nissink JW; Blackburn S
    Future Med Chem; 2014 Jun; 6(10):1113-26. PubMed ID: 25078133
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational Analysis and In silico Predictive Modeling for Inhibitors of PhoP Regulon in S. typhi on High-Throughput Screening Bioassay Dataset.
    Kaur H; Ahmad M; Scaria V
    Interdiscip Sci; 2016 Mar; 8(1):95-101. PubMed ID: 26298582
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brief Guide: Experimental Strategies for High-Quality Hit Selection from Small-Molecule Screening Campaigns.
    Rothenaigner I; Hadian K
    SLAS Discov; 2021 Aug; 26(7):851-854. PubMed ID: 33882754
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring the biological promiscuity of high-throughput screening hits through DFT calculations.
    Curpăn R; Avram S; Vianello R; Bologa C
    Bioorg Med Chem; 2014 Apr; 22(8):2461-8. PubMed ID: 24656802
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PAIN(S) relievers for medicinal chemists: how computational methods can assist in hit evaluation.
    Stork C; Kirchmair J
    Future Med Chem; 2018 Jul; 10(13):1533-1535. PubMed ID: 29956552
    [No Abstract]   [Full Text] [Related]  

  • 34. Site of Metabolism Prediction Based on ab initio Derived Atom Representations.
    Finkelmann AR; Göller AH; Schneider G
    ChemMedChem; 2017 Apr; 12(8):606-612. PubMed ID: 28322513
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of bioactive compound pathways using chemical interaction and structural information.
    Cheng S; Zhu C; Chu C; Huang T; Kong X; Zhu LC
    Comb Chem High Throughput Screen; 2016; 19(2):161-9. PubMed ID: 26552436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using information from historical high-throughput screens to predict active compounds.
    Riniker S; Wang Y; Jenkins JL; Landrum GA
    J Chem Inf Model; 2014 Jul; 54(7):1880-91. PubMed ID: 24933016
    [TBL] [Abstract][Full Text] [Related]  

  • 37. HTS promiscuity analyses for accelerating decision making.
    Böcker A; Bonneau PR; Edwards PJ
    J Biomol Screen; 2011 Aug; 16(7):765-74. PubMed ID: 21680863
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Pain of high-throughput screening--pan assay interference compounds].
    Xie T; Du GH
    Yao Xue Xue Bao; 2015 Aug; 50(8):925-30. PubMed ID: 26668990
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Frequent hitters: nuisance artifacts in high-throughput screening.
    Yang ZY; He JH; Lu AP; Hou TJ; Cao DS
    Drug Discov Today; 2020 Apr; 25(4):657-667. PubMed ID: 31987936
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of binary classification of structural chromosome aberrations for a diverse set of organic compounds from molecular structure.
    Serra JR; Thompson ED; Jurs PC
    Chem Res Toxicol; 2003 Feb; 16(2):153-63. PubMed ID: 12588186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.