These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1523 related articles for article (PubMed ID: 31479242)

  • 1. Shedding X-ray Light on the Interfacial Electrochemistry of Silicon Anodes for Li-Ion Batteries.
    Cao C; Shyam B; Wang J; Toney MF; Steinrück HG
    Acc Chem Res; 2019 Sep; 52(9):2673-2683. PubMed ID: 31479242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Study of Silicon Electrode Lithiation with X-ray Reflectivity.
    Cao C; Steinrück HG; Shyam B; Stone KH; Toney MF
    Nano Lett; 2016 Dec; 16(12):7394-7401. PubMed ID: 27783514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into the Formation and Stability of Solid Electrolyte Interphase for Nanostructured Silicon-Based Anode Electrodes Used in Li-Ion Batteries.
    Ezzedine M; Zamfir MR; Jardali F; Leveau L; Caristan E; Ersen O; Cojocaru CS; Florea I
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):24734-24746. PubMed ID: 34019366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Interphases for High-Energy Storage Using Reactive Metal Anodes.
    Wei S; Choudhury S; Tu Z; Zhang K; Archer LA
    Acc Chem Res; 2018 Jan; 51(1):80-88. PubMed ID: 29227617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing superior solid electrolyte interfaces on silicon anodes for high-performance lithium-ion batteries.
    Zhang Y; Du N; Yang D
    Nanoscale; 2019 Nov; 11(41):19086-19104. PubMed ID: 31538999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Reactivity and Passivation of Silicon Thin-Film Electrodes in Organic Carbonate Electrolytes.
    Hasa I; Haregewoin AM; Zhang L; Tsai WY; Guo J; Veith GM; Ross PN; Kostecki R
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40879-40890. PubMed ID: 32805823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved Battery Performance of Nanocrystalline Si Anodes Utilized by Radio Frequency (RF) Sputtered Multifunctional Amorphous Si Coating Layers.
    Ahn IK; Lee YJ; Na S; Lee SY; Nam DH; Lee JH; Joo YC
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2242-2248. PubMed ID: 29308877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of the Crystalline Li
    Bärmann P; Krueger B; Casino S; Winter M; Placke T; Wittstock G
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):55903-55912. PubMed ID: 33259711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface SiO
    Schnabel M; Harvey SP; Arca E; Stetson C; Teeter G; Ban C; Stradins P
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27017-27028. PubMed ID: 32407075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pentafluorophenyl Isocyanate as an Effective Electrolyte Additive for Improved Performance of Silicon-Based Lithium-Ion Full Cells.
    Nölle R; Achazi AJ; Kaghazchi P; Winter M; Placke T
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28187-28198. PubMed ID: 30044617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward quantifying capacity losses due to solid electrolyte interphase evolution in silicon thin film batteries.
    Steinrück HG; Cao C; Veith GM; Toney MF
    J Chem Phys; 2020 Feb; 152(8):084702. PubMed ID: 32113337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pore collapse and regrowth in silicon electrodes for rechargeable batteries.
    DeCaluwe SC; Dhar BM; Huang L; He Y; Yang K; Owejan JP; Zhao Y; Talin AA; Dura JA; Wang H
    Phys Chem Chem Phys; 2015 May; 17(17):11301-12. PubMed ID: 25839065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation Processes of a Solid Electrolyte Interphase at a Silicon/Sulfide Electrolyte Interface in a Model All-Solid-State Li-Ion Battery.
    Asano S; Hata JI; Watanabe K; Shimizu K; Matsui N; Yamada NL; Suzuki K; Kanno R; Hirayama M
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):7189-7199. PubMed ID: 38315660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Potentiodynamic Analysis of the Electrolyte/Silicon Electrodes Interface Reactions--A Sum Frequency Generation Vibrational Spectroscopy Study.
    Horowitz Y; Han HL; Ross PN; Somorjai GA
    J Am Chem Soc; 2016 Jan; 138(3):726-9. PubMed ID: 26651259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon.
    Chan MK; Wolverton C; Greeley JP
    J Am Chem Soc; 2012 Sep; 134(35):14362-74. PubMed ID: 22817384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of conductive binder to direct solid-electrolyte interphase formation over silicon anodes.
    Browning KL; Browning JF; Doucet M; Yamada NL; Liu G; Veith GM
    Phys Chem Chem Phys; 2019 Aug; 21(31):17356-17365. PubMed ID: 31355379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Step toward High-Energy Silicon-Based Thin Film Lithium Ion Batteries.
    Reyes Jiménez A; Klöpsch R; Wagner R; Rodehorst UC; Kolek M; Nölle R; Winter M; Placke T
    ACS Nano; 2017 May; 11(5):4731-4744. PubMed ID: 28437078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid Electrolyte Interphase Layer Formation during Lithiation of Single-Crystal Silicon Electrodes with a Protective Aluminum Oxide Coating.
    Ronneburg A; Silvi L; Cooper J; Harbauer K; Ballauff M; Risse S
    ACS Appl Mater Interfaces; 2021 May; 13(18):21241-21249. PubMed ID: 33909399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial Chemistry Effects in the Electrochemical Performance of Silicon Electrodes under Lithium-Ion Battery Conditions.
    Xu X; Martín-Yerga D; Grant NE; West G; Pain SL; Kang M; Walker M; Murphy JD; Unwin PR
    Small; 2023 Oct; 19(40):e2303442. PubMed ID: 37269212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 77.