These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 31479614)

  • 41. Antifungal Activity of Quinofumelin against
    Xiu Q; Bi L; Xu H; Li T; Zhou Z; Li Z; Wang J; Duan Y; Zhou M
    Toxins (Basel); 2021 May; 13(5):. PubMed ID: 34066154
    [No Abstract]   [Full Text] [Related]  

  • 42. Wheat crown rot pathogens Fusarium graminearum and F. pseudograminearum lack specialization.
    Chakraborty S; Obanor F; Westecott R; Abeywickrama K
    Phytopathology; 2010 Oct; 100(10):1057-65. PubMed ID: 20839941
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phytochemicals to suppress Fusarium head blight in wheat-chickpea rotation.
    Cruz AF; Hamel C; Yang C; Matsubara T; Gan Y; Singh AK; Kuwada K; Ishii T
    Phytochemistry; 2012 Jun; 78():72-80. PubMed ID: 22520499
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantification of Trichoderma afroharzianum, Trichoderma harzianum and Trichoderma gamsii inoculants in soil, the wheat rhizosphere and in planta suppression of the crown rot pathogen Fusarium pseudograminearum.
    Stummer BE; Zhang Q; Zhang X; Warren RA; Harvey PR
    J Appl Microbiol; 2020 Oct; 129(4):971-990. PubMed ID: 32320112
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fusarium head blight control and prevention of mycotoxin contamination in wheat with botanicals and tannic acid.
    Forrer HR; Musa T; Schwab F; Jenny E; Bucheli TD; Wettstein FE; Vogelgsang S
    Toxins (Basel); 2014 Feb; 6(3):830-49. PubMed ID: 24577585
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Study on the Antifungal Activity of Gallic Acid and Its Azole Derivatives against
    Zheng Y; Geng Y; Hou W; Li Z; Cheng C; Wang X; Yang Y
    Molecules; 2024 Apr; 29(9):. PubMed ID: 38731487
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Antifungal Activity and Mechanism of 4-Propylphenol Against
    Sun S; Tang N; Han K; You J; Liu A; Wang Q; Xu Q
    J Agric Food Chem; 2024 Mar; 72(10):5258-5268. PubMed ID: 38430124
    [No Abstract]   [Full Text] [Related]  

  • 48. Insights Into Triticum aestivum Seedling Root Rot Caused by Fusarium graminearum.
    Wang Q; Vera Buxa S; Furch A; Friedt W; Gottwald S
    Mol Plant Microbe Interact; 2015 Dec; 28(12):1288-303. PubMed ID: 26325125
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Edeine B
    Kim B; Nguyen MV; Park J; Kim YS; Han JW; Lee J-Y; Jeon J; Son H; Choi GJ; Kim H
    mBio; 2024 Jul; 15(7):e0135124. PubMed ID: 38860787
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Seed inoculation with endophytic fungal entomopathogens promotes plant growth and reduces crown and root rot (CRR) caused by Fusarium culmorum in wheat.
    Jaber LR
    Planta; 2018 Dec; 248(6):1525-1535. PubMed ID: 30140979
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficacy of zinc compounds in controlling Fusarium head blight and deoxynivalenol formation in wheat (Triticum aestivum L.).
    Savi GD; Piacentini KC; de Souza SR; Costa ME; Santos CM; Scussel VM
    Int J Food Microbiol; 2015 Jul; 205():98-104. PubMed ID: 25897993
    [TBL] [Abstract][Full Text] [Related]  

  • 52. EBR1, a novel Zn(2)Cys(6) transcription factor, affects virulence and apical dominance of the hyphal tip in Fusarium graminearum.
    Zhao C; Waalwijk C; de Wit PJ; van der Lee T; Tang D
    Mol Plant Microbe Interact; 2011 Dec; 24(12):1407-18. PubMed ID: 21830952
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The bZIP transcription factor FpAda1 is essential for fungal growth and conidiation in Fusarium pseudograminearum.
    Chen L; Ma Y; Zhao J; Geng X; Chen W; Ding S; Li H; Li H
    Curr Genet; 2020 Jun; 66(3):507-515. PubMed ID: 31696258
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An ABC pleiotropic drug resistance transporter of Fusarium graminearum with a role in crown and root diseases of wheat.
    Gardiner DM; Stephens AE; Munn AL; Manners JM
    FEMS Microbiol Lett; 2013 Nov; 348(1):36-45. PubMed ID: 23965171
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in Fusarium graminearum.
    Hu S; Zhou X; Gu X; Cao S; Wang C; Xu JR
    Mol Plant Microbe Interact; 2014 Jun; 27(6):557-66. PubMed ID: 24450772
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Wheat Endophyte
    Nzabanita C; Zhang L; Wang Y; Wang S; Guo L
    J Fungi (Basel); 2023 Dec; 10(1):. PubMed ID: 38248920
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functional characterization of Rho family small GTPases in Fusarium graminearum.
    Zhang C; Wang Y; Wang J; Zhai Z; Zhang L; Zheng W; Zheng W; Yu W; Zhou J; Lu G; Shim WB; Wang Z
    Fungal Genet Biol; 2013 Dec; 61():90-9. PubMed ID: 24055721
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A role for topoisomerase I in Fusarium graminearum and F. culmorum pathogenesis and sporulation.
    Baldwin TK; Urban M; Brown N; Hammond-Kosack KE
    Mol Plant Microbe Interact; 2010 May; 23(5):566-77. PubMed ID: 20367465
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum.
    Van Thuat N; Schäfer W; Bormann J
    Mol Plant Microbe Interact; 2012 Sep; 25(9):1142-56. PubMed ID: 22591226
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Zearalenone detoxification by zearalenone hydrolase is important for the antagonistic ability of Clonostachys rosea against mycotoxigenic Fusarium graminearum.
    Kosawang C; Karlsson M; Vélëz H; Rasmussen PH; Collinge DB; Jensen B; Jensen DF
    Fungal Biol; 2014 Apr; 118(4):364-73. PubMed ID: 24742831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.