These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31479622)

  • 1. Changing Tides: The Role of Natural and Anthropogenic Factors.
    Talke SA; Jay DA
    Ann Rev Mar Sci; 2020 Jan; 12():121-151. PubMed ID: 31479622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulating the Effects of Sea Level Rise on the Resilience and Migration of Tidal Wetlands along the Hudson River.
    Tabak NM; Laba M; Spector S
    PLoS One; 2016; 11(4):e0152437. PubMed ID: 27043136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estuarine tidal range dynamics under rising sea levels.
    Khojasteh D; Chen S; Felder S; Heimhuber V; Glamore W
    PLoS One; 2021; 16(9):e0257538. PubMed ID: 34543343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecosystem attributes related to tidal wetland effects on water quality.
    Findlay S; Fischer D
    Ecology; 2013 Jan; 94(1):117-25. PubMed ID: 23600246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upslope development of a tidal marsh as a function of upland land use.
    Anisfeld SC; Cooper KR; Kemp AC
    Glob Chang Biol; 2017 Feb; 23(2):755-766. PubMed ID: 27343840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into estuary habitat loss in the western United States using a new method for mapping maximum extent of tidal wetlands.
    Brophy LS; Greene CM; Hare VC; Holycross B; Lanier A; Heady WN; O'Connor K; Imaki H; Haddad T; Dana R
    PLoS One; 2019; 14(8):e0218558. PubMed ID: 31412030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncertainty in estuarine extreme water level predictions due to surge-tide interaction.
    Lyddon C; Brown JM; Leonardi N; Plater AJ
    PLoS One; 2018; 13(10):e0206200. PubMed ID: 30365514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic responses and implications to coastal wetlands and the surrounding regions under sea level rise.
    Alizad K; Hagen SC; Medeiros SC; Bilskie MV; Morris JT; Balthis L; Buckel CA
    PLoS One; 2018; 13(10):e0205176. PubMed ID: 30312304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tides affect plant connectivity in coastal wetlands on a small-patch scale.
    Wu Y; Zhao S; Dai L; Liu Y; Xie L; Zhang Z; Zhang M
    Chemosphere; 2021 Jan; 262():127977. PubMed ID: 33182103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Marshes and Mangroves as Nature-Based Coastal Storm Buffers.
    Temmerman S; Horstman EM; Krauss KW; Mullarney JC; Pelckmans I; Schoutens K
    Ann Rev Mar Sci; 2023 Jan; 15():95-118. PubMed ID: 35850492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid Loss of Tidal Flats in the Yangtze River Delta since 1974.
    Li X; Zhang X; Qiu C; Duan Y; Liu S; Chen D; Zhang L; Zhu C
    Int J Environ Res Public Health; 2020 Mar; 17(5):. PubMed ID: 32138286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An expanded rating curve model to estimate river discharge during tidal influences across the progressive-mixed-standing wave systems.
    Jones AE; Hardison AK; Hodges BR; McClelland JW; Moffett KB
    PLoS One; 2019; 14(12):e0225758. PubMed ID: 31851673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of climate change on freshwater resources in a heterogeneous coastal aquifer of Bremerhaven, Germany: A three-dimensional modeling study.
    Yang J; Graf T; Ptak T
    J Contam Hydrol; 2015; 177-178():107-21. PubMed ID: 25889797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes of soil particle size distribution in tidal flats in the Yellow River Delta.
    Lyu X; Yu J; Zhou M; Ma B; Wang G; Zhan C; Han G; Guan B; Wu H; Li Y; Wang D
    PLoS One; 2015; 10(3):e0121368. PubMed ID: 25816240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Tide Floods and Storm Surges During Atmospheric Rivers on the US West Coast.
    Piecuch CG; Coats S; Dangendorf S; Landerer FW; Reager JT; Thompson PR; Wahl T
    Geophys Res Lett; 2022 Jan; 49(2):e2021GL096820. PubMed ID: 36247419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of tidal flooding on estuarine biogeochemistry: Quantifying flood-driven nitrogen inputs in an urban, lower Chesapeake Bay sub-tributary.
    Macías-Tapia A; Mulholland MR; Selden CR; Loftis JD; Bernhardt PW
    Water Res; 2021 Aug; 201():117329. PubMed ID: 34161874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of salt marsh mosquito populations by the 18.6-yr lunar-nodal cycle.
    Rochlin I; Morris JT
    Ecology; 2017 Aug; 98(8):2059-2068. PubMed ID: 28418218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of drying and wetting cycles induced by tides on net ecosystem exchange of CO
    He WJ; Han GX; Xu YN; Zhang XT; Wang AD; Che CG; Sun BY; Zhang XS
    Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):269-277. PubMed ID: 29692036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased threat of tropical cyclones and coastal flooding to New York City during the anthropogenic era.
    Reed AJ; Mann ME; Emanuel KA; Lin N; Horton BP; Kemp AC; Donnelly JP
    Proc Natl Acad Sci U S A; 2015 Oct; 112(41):12610-5. PubMed ID: 26417111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circulation and suspended sediment dynamics in a tropical estuary under different morphological setting.
    Paiva BP; Schettini CA; Pereira MD; Siegle E; Miranda LB; Andutta FP
    An Acad Bras Cienc; 2016 Sep; 88(3):1265-76. PubMed ID: 27598844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.