BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 31479755)

  • 21. Attention Priority Map of Face Images in Human Early Visual Cortex.
    Mo C; He D; Fang F
    J Neurosci; 2018 Jan; 38(1):149-157. PubMed ID: 29133433
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pursuit and saccadic eye movement subregions in human frontal eye field: a high-resolution fMRI investigation.
    Rosano C; Krisky CM; Welling JS; Eddy WF; Luna B; Thulborn KR; Sweeney JA
    Cereb Cortex; 2002 Feb; 12(2):107-15. PubMed ID: 11739259
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Marmosets: a promising model for probing the neural mechanisms underlying complex visual networks such as the frontal-parietal network.
    D'Souza JF; Price NSC; Hagan MA
    Brain Struct Funct; 2021 Dec; 226(9):3007-3022. PubMed ID: 34518902
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activity in human frontal cortex associated with spatial working memory and saccadic behavior.
    Postle BR; Berger JS; Taich AM; D'Esposito M
    J Cogn Neurosci; 2000; 12 Suppl 2():2-14. PubMed ID: 11506643
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field.
    Burman DD; Bruce CJ
    J Neurophysiol; 1997 May; 77(5):2252-67. PubMed ID: 9163356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Patterns of afferent input to the caudal and rostral areas of the dorsal premotor cortex (6DC and 6DR) in the marmoset monkey.
    Burman KJ; Bakola S; Richardson KE; Reser DH; Rosa MG
    J Comp Neurol; 2014 Nov; 522(16):3683-716. PubMed ID: 24888737
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissociation of saccade-related and pursuit-related activation in human frontal eye fields as revealed by fMRI.
    Petit L; Clark VP; Ingeholm J; Haxby JV
    J Neurophysiol; 1997 Jun; 77(6):3386-90. PubMed ID: 9212283
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cortico-Subcortical Functional Connectivity Profiles of Resting-State Networks in Marmosets and Humans.
    Hori Y; Schaeffer DJ; Yoshida A; Cléry JC; Hayrynen LK; Gati JS; Menon RS; Everling S
    J Neurosci; 2020 Nov; 40(48):9236-9249. PubMed ID: 33097633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Face selective patches in marmoset frontal cortex.
    Schaeffer DJ; Selvanayagam J; Johnston KD; Menon RS; Freiwald WA; Everling S
    Nat Commun; 2020 Sep; 11(1):4856. PubMed ID: 32978385
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activation of frontoparietal cortices during memorized triple-step sequences of saccadic eye movements: an fMRI study.
    Heide W; Binkofski F; Seitz RJ; Posse S; Nitschke MF; Freund HJ; Kömpf D
    Eur J Neurosci; 2001 Mar; 13(6):1177-89. PubMed ID: 11285015
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional cytoarchitectonic analysis of the posterior bank of the human precentral sulcus.
    Schmitt O; Modersitzki J; Heldmann S; Wirtz S; Hömke L; Heide W; Kömpf D; Wree A
    Anat Embryol (Berl); 2005 Dec; 210(5-6):387-400. PubMed ID: 16177908
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional magnetic resonance imaging of macaque monkeys performing visually guided saccade tasks: comparison of cortical eye fields with humans.
    Koyama M; Hasegawa I; Osada T; Adachi Y; Nakahara K; Miyashita Y
    Neuron; 2004 Mar; 41(5):795-807. PubMed ID: 15003178
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cortical afferents to the smooth-pursuit region of the macaque monkey's frontal eye field.
    Stanton GB; Friedman HR; Dias EC; Bruce CJ
    Exp Brain Res; 2005 Aug; 165(2):179-92. PubMed ID: 15940495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stimulus-response incompatibility activates cortex proximate to three eye fields.
    Merriam EP; Colby CL; Thulborn KR; Luna B; Olson CR; Sweeney JA
    Neuroimage; 2001 May; 13(5):794-800. PubMed ID: 11304076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional MRI of visual responses in the awake, behaving marmoset.
    Hung CC; Yen CC; Ciuchta JL; Papoti D; Bock NA; Leopold DA; Silva AC
    Neuroimage; 2015 Oct; 120():1-11. PubMed ID: 26149609
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pre-saccadic Neural Enhancements in Marmoset Area MT.
    Coop SH; Yates JL; Mitchell JF
    J Neurosci; 2024 Jan; 44(4):. PubMed ID: 38050176
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Corticocortical input to the smooth and saccadic eye movement subregions of the frontal eye field in Cebus monkeys.
    Tian JR; Lynch JC
    J Neurophysiol; 1996 Oct; 76(4):2754-71. PubMed ID: 8899643
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of reversible inactivation of macaque lateral intraparietal area on visual and memory saccades.
    Li CS; Mazzoni P; Andersen RA
    J Neurophysiol; 1999 Apr; 81(4):1827-38. PubMed ID: 10200217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Whole brain mapping of somatosensory responses in awake marmosets investigated with ultra-high-field fMRI.
    Cléry JC; Hori Y; Schaeffer DJ; Gati JS; Pruszynski JA; Everling S
    J Neurophysiol; 2020 Dec; 124(6):1900-1913. PubMed ID: 33112698
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effector specificity in macaque frontal and parietal cortex.
    Premereur E; Janssen P; Vanduffel W
    J Neurosci; 2015 Feb; 35(8):3446-59. PubMed ID: 25716844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.