These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 31479760)
1. Differences in cadmium absorption by 71 leaf vegetable varieties from different families and genera and their health risk assessment. Fang H; Li W; Tu S; Ding Y; Wang R; Rensing C; Li Y; Feng R Ecotoxicol Environ Saf; 2019 Nov; 184():109593. PubMed ID: 31479760 [TBL] [Abstract][Full Text] [Related]
2. Mercury accumulation and transformation of main leaf vegetable crops in Cambosol and Ferrosol soil in China. Yang B; Gao Y; Zhang C; Zheng X; Li B Environ Sci Pollut Res Int; 2020 Jan; 27(1):391-398. PubMed ID: 31792793 [TBL] [Abstract][Full Text] [Related]
3. Differences of cadmium absorption and accumulation in selected vegetable crops. Ni WZ; Yang XE; Long XX J Environ Sci (China); 2002 Jul; 14(3):399-405. PubMed ID: 12211993 [TBL] [Abstract][Full Text] [Related]
4. Inconsistent effects of a composite soil amendment on cadmium accumulation and consumption risk of 14 vegetables. Liu Q; Chen Z; Wu Y; Huang L; Munir MAM; Zhou Q; Wen Z; Jiang Y; Tao Y; Feng Y Environ Sci Pollut Res Int; 2022 Oct; 29(47):71810-71825. PubMed ID: 35604595 [TBL] [Abstract][Full Text] [Related]
5. Effect of soil cadmium on growth, photosynthesis and quality of Raphanus sativus and Lactuca sativa. Kaur N; Jhanji S J Environ Biol; 2016 Sep; 37(5):993-7. PubMed ID: 29251899 [TBL] [Abstract][Full Text] [Related]
6. Effect of cadmium accumulation on mineral nutrient levels in vegetable crops: potential implications for human health. Yang D; Guo Z; Green ID; Xie D Environ Sci Pollut Res Int; 2016 Oct; 23(19):19744-53. PubMed ID: 27411535 [TBL] [Abstract][Full Text] [Related]
7. Phytoavailability, bioaccumulation, and human health risks of metal(loid) elements in an agroecosystem near a lead-zinc mine. Luo L; Shen Y; Wang X; Chu B; Xu T; Liu Y; Zeng Y; Liu J Environ Sci Pollut Res Int; 2018 Aug; 25(24):24111-24124. PubMed ID: 29948688 [TBL] [Abstract][Full Text] [Related]
8. Inter- and intraspecific variations of cadmium accumulation of 13 leafy vegetable species in a greenhouse experiment. Wang J; Fang W; Yang Z; Yuan J; Zhu Y; Yu H J Agric Food Chem; 2007 Oct; 55(22):9118-23. PubMed ID: 17914880 [TBL] [Abstract][Full Text] [Related]
9. Assessing cadmium exposure risks of vegetables with plant uptake factor and soil property. Yang Y; Chang AC; Wang M; Chen W; Peng C Environ Pollut; 2018 Jul; 238():263-269. PubMed ID: 29571025 [TBL] [Abstract][Full Text] [Related]
10. Potential health risk in areas with high naturally-occurring cadmium background in southwestern China. Liu Y; Xiao T; Baveye PC; Zhu J; Ning Z; Li H Ecotoxicol Environ Saf; 2015 Feb; 112():122-31. PubMed ID: 25463862 [TBL] [Abstract][Full Text] [Related]
11. Genotypic variations in the accumulation of Cd exhibited by different vegetables. Yang J; Guo H; Ma Y; Wang L; Wei D; Hua L J Environ Sci (China); 2010; 22(8):1246-52. PubMed ID: 21179965 [TBL] [Abstract][Full Text] [Related]
12. Cadmium accumulation in leaves of leafy vegetables. Baldantoni D; Morra L; Zaccardelli M; Alfani A Ecotoxicol Environ Saf; 2016 Jan; 123():89-94. PubMed ID: 26004982 [TBL] [Abstract][Full Text] [Related]
13. Accumulation and potential health risks of cadmium, lead and arsenic in vegetables grown near mining sites in Northern Vietnam. Bui AT; Nguyen HT; Nguyen MN; Tran TH; Vu TV; Nguyen CH; Reynolds HL Environ Monit Assess; 2016 Sep; 188(9):525. PubMed ID: 27542667 [TBL] [Abstract][Full Text] [Related]
14. [Characteristics and Evaluation of Heavy Metal Pollution in Vegetables in Guangzhou]. Chen ZL; Huang L; Zhou CY; Zhong SX; Wang X; Dai Y; Jiang XL Huan Jing Ke Xue; 2017 Jan; 38(1):389-398. PubMed ID: 29965071 [TBL] [Abstract][Full Text] [Related]
15. Risk assessment for safety of soils and vegetables around a lead/zinc mine. Li J; Xie ZM; Xu JM; Sun YF Environ Geochem Health; 2006; 28(1-2):37-44. PubMed ID: 16528596 [TBL] [Abstract][Full Text] [Related]
16. Cadmium accumulation in edible flowering cabbages in the Pearl River Delta, China: Critical soil factors and enrichment models. Liu C; Chang C; Fei Y; Li F; Wang Q; Zhai G; Lei J Environ Pollut; 2018 Feb; 233():880-888. PubMed ID: 29110895 [TBL] [Abstract][Full Text] [Related]
17. Transfer of cadmium from soil to vegetable in the Pearl River Delta area, South China. Zhang H; Chen J; Zhu L; Yang G; Li D PLoS One; 2014; 9(9):e108572. PubMed ID: 25247431 [TBL] [Abstract][Full Text] [Related]
18. Exogenous Glycinebetaine Promotes Soil Cadmium Uptake by Edible Amaranth Grown during Subtropical Hot Season. Yao WQ; Lei YK; Yang P; Li QS; Wang LL; He BY; Xu ZM; Zhou C; Ye HJ Int J Environ Res Public Health; 2018 Aug; 15(9):. PubMed ID: 30134519 [TBL] [Abstract][Full Text] [Related]
19. Home gardening near a mining site in an arsenic-endemic region of Arizona: assessing arsenic exposure dose and risk via ingestion of home garden vegetables, soils, and water. Ramirez-Andreotta MD; Brusseau ML; Beamer P; Maier RM Sci Total Environ; 2013 Jun; 454-455():373-82. PubMed ID: 23562690 [TBL] [Abstract][Full Text] [Related]
20. Cadmium Accumulation Risk in Vegetables and Rice in Southern China: Insights from Solid-Solution Partitioning and Plant Uptake Factor. Yang Y; Wang M; Chen W; Li Y; Peng C J Agric Food Chem; 2017 Jul; 65(27):5463-5469. PubMed ID: 28635264 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]