BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

718 related articles for article (PubMed ID: 31479811)

  • 1. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates.
    Karimian N; Burton ED; Johnston SG
    Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Humic acid impacts antimony partitioning and speciation during iron(II)-induced ferrihydrite transformation.
    Karimian N; Burton ED; Johnston SG; Hockmann K; Choppala G
    Sci Total Environ; 2019 Sep; 683():399-410. PubMed ID: 31141743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimony and arsenic partitioning during Fe
    Karimian N; Johnston SG; Burton ED
    Chemosphere; 2018 Mar; 195():515-523. PubMed ID: 29277031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavior of antimony(V) during the transformation of ferrihydrite and its environmental implications.
    Mitsunobu S; Muramatsu C; Watanabe K; Sakata M
    Environ Sci Technol; 2013 Sep; 47(17):9660-7. PubMed ID: 23909642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Antimony(V) on Iron(II)-Catalyzed Ferrihydrite Transformation Pathways: A Novel Mineral Switch for Feroxyhyte Formation.
    Hockmann K; Karimian N; Schlagenhauff S; Planer-Friedrich B; Burton ED
    Environ Sci Technol; 2021 Apr; 55(8):4954-4963. PubMed ID: 33710876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimony and Arsenic Behavior during Fe(II)-Induced Transformation of Jarosite.
    Karimian N; Johnston SG; Burton ED
    Environ Sci Technol; 2017 Apr; 51(8):4259-4268. PubMed ID: 28347133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abiotic reduction of antimony(V) by green rust (Fe(4)(II)Fe(2)(III)(OH)(12)SO(4).3H(2)O).
    Mitsunobu S; Takahashi Y; Sakai Y
    Chemosphere; 2008 Jan; 70(5):942-7. PubMed ID: 17761212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Organic Matter on Iron(II)-Catalyzed Mineral Transformations in Ferrihydrite-Organic Matter Coprecipitates.
    ThomasArrigo LK; Byrne JM; Kappler A; Kretzschmar R
    Environ Sci Technol; 2018 Nov; 52(21):12316-12326. PubMed ID: 30991468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates.
    Shimizu M; Zhou J; Schröder C; Obst M; Kappler A; Borch T
    Environ Sci Technol; 2013; 47(23):13375-84. PubMed ID: 24219167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of aqueous Fe(II) on Sb(V) sorption on soil and goethite.
    Fan JX; Wang YJ; Fan TT; Dang F; Zhou DM
    Chemosphere; 2016 Mar; 147():44-51. PubMed ID: 26761596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimony(V) incorporation into synthetic ferrihydrite, goethite, and natural iron oxyhydroxides.
    Mitsunobu S; Takahashi Y; Terada Y; Sakata M
    Environ Sci Technol; 2010 May; 44(10):3712-8. PubMed ID: 20426473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Coprecipitated Organic Matter on Fe2+(aq)-Catalyzed Transformation of Ferrihydrite: Implications for Carbon Dynamics.
    Chen C; Kukkadapu R; Sparks DL
    Environ Sci Technol; 2015 Sep; 49(18):10927-36. PubMed ID: 26260047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial Reduction of Antimony(V)-Bearing Ferrihydrite by Geobacter sulfurreducens.
    Xie J; Coker VS; O'Driscoll B; Cai R; Haigh SJ; Lloyd JR
    Appl Environ Microbiol; 2023 Mar; 89(3):e0217522. PubMed ID: 36853045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ferrihydrite Growth and Transformation in the Presence of Ferrous Iron and Model Organic Ligands.
    ThomasArrigo LK; Kaegi R; Kretzschmar R
    Environ Sci Technol; 2019 Dec; 53(23):13636-13647. PubMed ID: 31718167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fe(II)-Catalyzed Transformation of Organic Matter-Ferrihydrite Coprecipitates: A Closer Look Using Fe Isotopes.
    Zhou Z; Latta DE; Noor N; Thompson A; Borch T; Scherer MM
    Environ Sci Technol; 2018 Oct; 52(19):11142-11150. PubMed ID: 30189730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of antimony(V) by floodplain soils, amorphous iron(III) hydroxide and humic acid.
    Tighe M; Lockwood P; Wilson S
    J Environ Monit; 2005 Dec; 7(12):1177-85. PubMed ID: 16307069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimony(V) Incorporation into Schwertmannite: Critical Insights on Antimony Retention in Acidic Environments.
    Rastegari M; Karimian N; Johnston SG; Doherty SJ; Hamilton JL; Choppala G; Hosseinpour Moghaddam M; Burton ED
    Environ Sci Technol; 2022 Dec; 56(24):17776-17784. PubMed ID: 36445713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformations of Ferrihydrite-Extracellular Polymeric Substance Coprecipitates Driven by Dissolved Sulfide: Interrelated Effects of Carbon and Sulfur Loadings.
    Wang Q; Wang J; Wang X; Kumar N; Pan Z; Peiffer S; Wang Z
    Environ Sci Technol; 2023 Mar; 57(10):4342-4353. PubMed ID: 36864006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reductive transformation of birnessite and the mobility of co-associated antimony.
    Karimian N; Johnston SG; Burton ED
    J Hazard Mater; 2021 Feb; 404(Pt B):124227. PubMed ID: 33086181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient removal of Sb(Ⅴ) from water using sulphidated ferrihydrite via tripuhyite (FeSbO
    Ma X; Li Q; Li R; Zhang W; Sun X; Li J; Shen J; Han W
    J Environ Manage; 2022 May; 309():114675. PubMed ID: 35180437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.