These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31479845)

  • 1. Life cycle costing of energy recovery from solid recovered fuel produced in MBT plants in Italy.
    Rigamonti L; Borghi G; Martignon G; Grosso M
    Waste Manag; 2019 Nov; 99():154-162. PubMed ID: 31479845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of MRF residue as alternative fuel in cement production.
    Fyffe JR; Breckel AC; Townsend AK; Webber ME
    Waste Manag; 2016 Jan; 47(Pt B):276-84. PubMed ID: 26187294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid recovered fuel: An experiment on classification and potential applications.
    Bessi C; Lombardi L; Meoni R; Canovai A; Corti A
    Waste Manag; 2016 Jan; 47(Pt B):184-94. PubMed ID: 26298482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy implications of mechanical and mechanical-biological treatment compared to direct waste-to-energy.
    Cimpan C; Wenzel H
    Waste Manag; 2013 Jul; 33(7):1648-58. PubMed ID: 23660494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Case study of an MBT plant producing SRF for cement kiln co-combustion, coupled with a bioreactor landfill for process residues.
    Grosso M; Dellavedova S; Rigamonti L; Scotti S
    Waste Manag; 2016 Jan; 47(Pt B):267-75. PubMed ID: 26601731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life Cycle Assessment of Mixed Municipal Solid Waste: Multi-input versus multi-output perspective.
    Fiorentino G; Ripa M; Protano G; Hornsby C; Ulgiati S
    Waste Manag; 2015 Dec; 46():599-611. PubMed ID: 26257056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wastes as co-fuels: the policy framework for solid recovered fuel (SRF) in Europe, with UK implications.
    Garg A; Smith R; Hill D; Simms N; Pollard S
    Environ Sci Technol; 2007 Jul; 41(14):4868-74. PubMed ID: 17711195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the environmental sustainability of different waste-to-energy plant configurations.
    Lombardi L; Carnevale EA
    Waste Manag; 2018 Mar; 73():232-246. PubMed ID: 28728789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The application of SRF vs. RDF classification and specifications to the material flows of two mechanical-biological treatment plants of Rome: Comparison and implications.
    Di Lonardo MC; Franzese M; Costa G; Gavasci R; Lombardi F
    Waste Manag; 2016 Jan; 47(Pt B):195-205. PubMed ID: 26243051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential SRF generation from a closed landfill in northern Italy.
    Passamani G; Ragazzi M; Torretta V
    Waste Manag; 2016 Jan; 47(Pt B):157-63. PubMed ID: 26209342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste.
    Garg A; Smith R; Hill D; Longhurst PJ; Pollard SJ; Simms NJ
    Waste Manag; 2009 Aug; 29(8):2289-97. PubMed ID: 19443201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid recovered fuel: influence of waste stream composition and processing on chlorine content and fuel quality.
    Velis C; Wagland S; Longhurst P; Robson B; Sinfield K; Wise S; Pollard S
    Environ Sci Technol; 2012 Feb; 46(3):1923-31. PubMed ID: 22191490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.
    Gug J; Cacciola D; Sobkowicz MJ
    Waste Manag; 2015 Jan; 35():283-92. PubMed ID: 25453320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The strategy for conservation non-renewable natural resources through producing and application solid recovery fuel in the cement industry: a case study for Lithuania.
    Pitak I; Rinkevičius D; Kalpokaitė-Dičkuvienė R; Baltušnikas A; Denafas G
    Environ Sci Pollut Res Int; 2022 Oct; 29(46):69618-69634. PubMed ID: 35576030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sampling, characterisation and processing of solid recovered fuel production from municipal solid waste: An Italian plant case study.
    Ranieri E; Ionescu G; Fedele A; Palmieri E; Ranieri AC; Campanaro V
    Waste Manag Res; 2017 Aug; 35(8):890-898. PubMed ID: 28703076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, quality, and quality assurance of solid recovered fuels for the substitution of fossil feedstock in the cement industry.
    Sarc R; Lorber KE; Pomberger R; Rogetzer M; Sipple EM
    Waste Manag Res; 2014 Jul; 32(7):565-85. PubMed ID: 24942836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste.
    Nasrullah M; Vainikka P; Hannula J; Hurme M; Kärki J
    Waste Manag; 2014 Aug; 34(8):1398-407. PubMed ID: 24735992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of energy recovery from waste in China.
    Dorn T; Flamme S; Nelles M
    Waste Manag Res; 2012 Apr; 30(4):432-41. PubMed ID: 22492261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustainable mechanical biological treatment of solid waste in urbanized areas with low recycling rates.
    Trulli E; Ferronato N; Torretta V; Piscitelli M; Masi S; Mancini I
    Waste Manag; 2018 Jan; 71():556-564. PubMed ID: 29066137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.
    Nasrullah M; Vainikka P; Hannula J; Hurme M; Kärki J
    Waste Manag Res; 2015 Feb; 33(2):146-56. PubMed ID: 25568089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.