These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31479852)

  • 1. Haptic biofeedback induces changes in ankle push-off during walking.
    Schenck C; Bakke D; Besier T
    Gait Posture; 2019 Oct; 74():76-82. PubMed ID: 31479852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the effects of real-time propulsive force versus limb angle gait biofeedback on gait biomechanics.
    Liu J; Santucci V; Eicholtz S; Kesar TM
    Gait Posture; 2021 Jan; 83():107-113. PubMed ID: 33129170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ankle power biofeedback attenuates the distal-to-proximal redistribution in older adults.
    Browne MG; Franz JR
    Gait Posture; 2019 Jun; 71():44-49. PubMed ID: 31005854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical effects of augmented ankle power output during human walking.
    Fickey SN; Browne MG; Franz JR
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30266784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of unilateral real-time biofeedback on propulsive forces during gait.
    Schenck C; Kesar TM
    J Neuroeng Rehabil; 2017 Jun; 14(1):52. PubMed ID: 28583196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ankle exoskeleton assistance and plantar pressure biofeedback on incline walking mechanics and muscle activity in cerebral palsy.
    Fang Y; Lerner ZF
    J Biomech; 2024 Jan; 163():111944. PubMed ID: 38219555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Horizontal Impeding Force Gait Training on Older Adult Push-Off Intensity.
    Conway KA; Crudup KL; Lewek MD; Franz JR
    Med Sci Sports Exerc; 2021 Mar; 53(3):574-580. PubMed ID: 33560768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Timing of propulsion-related biomechanical variables is impaired in individuals with post-stroke hemiparesis.
    Alam Z; Rendos NK; Vargas AM; Makanjuola J; Kesar TM
    Gait Posture; 2022 Jul; 96():275-278. PubMed ID: 35716486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utility of Gait Biofeedback Training to Improve Walking Biomechanics in Patients With Chronic Ankle Instability: A Critically Appraised Topic.
    Koldenhoven R; Simpson JD; Forsyth L; Donovan L; Torp DM
    J Sport Rehabil; 2022 Aug; 31(6):819-825. PubMed ID: 35405633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Société de Biomécanique young investigator award 2022: Effects of applying functional electrical stimulation to ankle plantarflexor muscles on forward propulsion during walking in young healthy adults.
    Aout T; Begon M; Peyrot N; Caderby T
    J Biomech; 2024 May; 168():112114. PubMed ID: 38677030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preliminary effectiveness of a sequential exercise intervention on gait function in ambulant patients with multiple sclerosis - A pilot study.
    Heine M; Richards R; Geurtz B; Los F; Rietberg M; Harlaar J; Gerrits K; Beckerman H; de Groot V
    Clin Biomech (Bristol, Avon); 2019 Feb; 62():1-6. PubMed ID: 30614444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time feedback enhances forward propulsion during walking in old adults.
    Franz JR; Maletis M; Kram R
    Clin Biomech (Bristol, Avon); 2014 Jan; 29(1):68-74. PubMed ID: 24238977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decline in gait propulsion in older adults over age decades.
    Sloot LH; Malheiros S; Truijen S; Saeys W; Mombaur K; Hallemans A; van Criekinge T
    Gait Posture; 2021 Oct; 90():475-482. PubMed ID: 34619614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel walking cane with haptic biofeedback reduces knee adduction moment in the osteoarthritic knee.
    Schuster E; Routson RL; Hinchcliff M; Benoff K; Suri P; Richburg C; Muir BC; Czerniecki JM; Aubin PM
    J Biomech; 2021 Jan; 114():110150. PubMed ID: 33285489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wearable lower limb haptic feedback device for retraining Foot Progression Angle and Step Width.
    Chen DKY; Haller M; Besier TF
    Gait Posture; 2017 Jun; 55():177-183. PubMed ID: 28460321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms used to increase peak propulsive force following 12-weeks of gait training in individuals poststroke.
    Hsiao H; Knarr BA; Pohlig RT; Higginson JS; Binder-Macleod SA
    J Biomech; 2016 Feb; 49(3):388-95. PubMed ID: 26776931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of Wearable Haptic Biofeedback Training for Reducing the Knee Abduction Moment During Overground Walking.
    Lindsey BW; Xu J; Chiasson D; Shull P; Cortes N
    J Biomech Eng; 2021 Apr; 143(4):. PubMed ID: 32793949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of sensor location for modifying center of pressure during gait using haptic feedback in people with chronic ankle instability.
    Migel KG; Blackburn JT; Gross MT; Pietrosimone B; Thoma LM; Wikstrom EA
    Gait Posture; 2024 May; 110():71-76. PubMed ID: 38537341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the Immediate Effects of Audio, Visual, or Audiovisual Gait Biofeedback on Propulsive Force Generation in Able-Bodied and Post-stroke Individuals.
    Liu J; Kim HB; Wolf SL; Kesar TM
    Appl Psychophysiol Biofeedback; 2020 Sep; 45(3):211-220. PubMed ID: 32347399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.