These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 31479853)

  • 1. Catalytic pyrolysis of biomass-plastic wastes in the presence of MgO and MgCO
    Yuan R; Shen Y
    Bioresour Technol; 2019 Dec; 293():122076. PubMed ID: 31479853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomass pyrolysis with alkaline-earth-metal additive for co-production of bio-oil and biochar-based soil amendment.
    Shen Y; Yu S; Yuan R; Wang P
    Sci Total Environ; 2020 Nov; 743():140760. PubMed ID: 32653719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic co-pyrolysis of sewage sludge and rice husk over biochar catalyst: Bio-oil upgrading and catalytic mechanism.
    Qiu Z; Zhai Y; Li S; Liu X; Liu X; Wang B; Liu Y; Li C; Hu Y
    Waste Manag; 2020 Aug; 114():225-233. PubMed ID: 32682087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil.
    Hassan H; Lim JK; Hameed BH
    Bioresour Technol; 2016 Dec; 221():645-655. PubMed ID: 27671343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous production of aromatics-rich bio-oil and carbon nanomaterials from catalytic co-pyrolysis of biomass/plastic wastes and in-line catalytic upgrading of pyrolysis gas.
    Xu D; Yang S; Su Y; Shi L; Zhang S; Xiong Y
    Waste Manag; 2021 Feb; 121():95-104. PubMed ID: 33360310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic fast co-pyrolysis of waste greenhouse plastic films and rice husk using hierarchical micro-mesoporous composite molecular sieve.
    Li Z; Zhong Z; Zhang B; Wang W; Seufitelli GVS; Resende FLP
    Waste Manag; 2020 Feb; 102():561-568. PubMed ID: 31770690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-situ catalytic pyrolysis upgradation of microalgae into hydrocarbon rich bio-oil: Effects of nitrogen and carbon dioxide environment.
    Mo L; Dai H; Feng L; Liu B; Li X; Chen Y; Khan S
    Bioresour Technol; 2020 Oct; 314():123758. PubMed ID: 32629379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilisation of poultry industry wastes for liquid biofuel production via thermal and catalytic fast pyrolysis.
    Kantarli IC; Stefanidis SD; Kalogiannis KG; Lappas AA
    Waste Manag Res; 2019 Feb; 37(2):157-167. PubMed ID: 30249165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of hydrocarbons and phenols in catalytic pyrolysis bio-oil by employing aluminum hydroxide nanoparticle based spent adsorbent derived catalysts.
    Gupta S; Lanjewar R; Mondal P
    Chemosphere; 2022 Jan; 287(Pt 3):132220. PubMed ID: 34543895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of torrefaction on compositions of bio-oil and syngas from biomass pyrolysis by microwave heating.
    Ren S; Lei H; Wang L; Bu Q; Chen S; Wu J; Julson J; Ruan R
    Bioresour Technol; 2013 May; 135():659-64. PubMed ID: 22840200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrolysis and copyrolysis of three lignocellulosic biomass residues from the agro-food industry: A comparative study.
    Fermanelli CS; Córdoba A; Pierella LB; Saux C
    Waste Manag; 2020 Feb; 102():362-370. PubMed ID: 31731255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving hydrocarbon yield via catalytic fast co-pyrolysis of biomass and plastic over ceria and HZSM-5: An analytical pyrolyzer analysis.
    Ding K; He A; Zhong D; Fan L; Liu S; Wang Y; Liu Y; Chen P; Lei H; Ruan R
    Bioresour Technol; 2018 Nov; 268():1-8. PubMed ID: 30064033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of torrefaction with Mg-based additives on the pyrolysis of cotton stalk.
    Zeng K; Yang Q; Zhang Y; Mei Y; Wang X; Yang H; Shao J; Li J; Chen H
    Bioresour Technol; 2018 Aug; 261():62-69. PubMed ID: 29653335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A green route for pyrolysis poly-generation of typical high ash biomass, rice husk: Effects on simultaneous production of carbonic oxide-rich syngas, phenol-abundant bio-oil, high-adsorption porous carbon and amorphous silicon dioxide.
    Su Y; Liu L; Zhang S; Xu D; Du H; Cheng Y; Wang Z; Xiong Y
    Bioresour Technol; 2020 Jan; 295():122243. PubMed ID: 31622918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residues and waste plastics combined with catalytic upgradation.
    Suriapparao DV; Vinu R; Shukla A; Haldar S
    Bioresour Technol; 2020 Apr; 302():122775. PubMed ID: 31986334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of oxide catalysts on the properties of bio-oil from in-situ catalytic pyrolysis of palm empty fruit bunch fiber.
    Chong YY; Thangalazhy-Gopakumar S; Ng HK; Lee LY; Gan S
    J Environ Manage; 2019 Oct; 247():38-45. PubMed ID: 31229784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrolysis and combustion kinetics of lignocellulosic biomass pellets with calcium-rich wastes from agro-forestry residues.
    Yuan R; Yu S; Shen Y
    Waste Manag; 2019 Mar; 87():86-96. PubMed ID: 31109588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons.
    Ryu HW; Kim DH; Jae J; Lam SS; Park ED; Park YK
    Bioresour Technol; 2020 Aug; 310():123473. PubMed ID: 32389430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomass co-pyrolysis: Effects of blending three different biomasses on oil yield and quality.
    Hopa DY; Alagöz O; Yılmaz N; Dilek M; Arabacı G; Mutlu T
    Waste Manag Res; 2019 Sep; 37(9):925-933. PubMed ID: 31319779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-pyrolysis of microalgae and other biomass wastes for the production of high-quality bio-oil: Progress and prospective.
    Su G; Ong HC; Gan YY; Chen WH; Chong CT; Ok YS
    Bioresour Technol; 2022 Jan; 344(Pt B):126096. PubMed ID: 34626763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.