These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 31479966)

  • 1. Mechanical simulation and contact analysis of the hybrid longitudinal-torsional ultrasonic motor.
    Yang L; Ren W; Ma C; Chen L
    Ultrasonics; 2020 Jan; 100():105982. PubMed ID: 31479966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and analysis of a longitudinal and torsional type ultrasonic motor with two stators.
    Yi Y; Seemann W; Gausmann R; Zhong J
    Ultrasonics; 2005 Aug; 43(8):629-34. PubMed ID: 15878188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a radial-torsional vibration hybrid type ultrasonic motor with a hollow and short cylindrical structure.
    Wang J; Guo J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):1054-8. PubMed ID: 19473923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force transfer model and characteristics of hybrid transducer type ultrasonic motors.
    Guo J; Gong S; Guo H; Liu X; Ji K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Apr; 51(4):387-95. PubMed ID: 15139540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical analysis of the symmetric hybrid transducer ultrasonic motor.
    Satonobu J; Friend JR; Nakamura K; Ueha S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Nov; 48(6):1625-31. PubMed ID: 11800124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of the longitudinal vibration system for the hybrid transducer ultrasonic motor.
    Satonobu J; Lee D; Nakamura K; Ueha S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):216-21. PubMed ID: 18238533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element simulation for a new disc-type ultrasonic stator.
    Juang PA; Gu DW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Apr; 50(4):368-75. PubMed ID: 12744392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a novel radial-torsional hollow ultrasonic motor and contact interface coating test.
    Yu H; Chen S; Liu J; Wang L; Hu J
    Ultrasonics; 2023 May; 131():106950. PubMed ID: 36791529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite-element analysis of the rotor/stator contact in a ring-type ultrasonic motor.
    Maeno T; Tsukimoto T; Miyake A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(6):668-74. PubMed ID: 18267680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical analysis of the hybrid transducer ultrasonic motor: comparison of characteristics calculated by transmission-line and lumped-element models.
    Satonobu J; Friend JR; Nakamura K; Ueha S
    Ultrasonics; 2002 Jun; 39(8):559-65. PubMed ID: 12109546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Actuating mechanism and design of a cylindrical traveling wave ultrasonic motor using cantilever type composite transducer.
    Liu Y; Chen W; Liu J; Shi S
    PLoS One; 2010 Apr; 5(4):e10020. PubMed ID: 20368809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement mechanism of energy conversion efficiency in ultrasonic motor with flexible rotor.
    Chen H; Nie R; Han W; Qiu J
    Ultrasonics; 2022 Mar; 120():106659. PubMed ID: 34922219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Dynamic Simulation of a Novel Traveling Wave Linear Ultrasonic Motor.
    Yang L; Yao K; Ren W; Chen L; Yang M; Zhao R; Tang S
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contact modeling and performance evaluation of ring type traveling wave ultrasonic motors considering stator teeth.
    Jiang C; Wu X; Lu D; Xu Z; Jin L
    Ultrasonics; 2021 Dec; 117():106518. PubMed ID: 34303927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and performance analysis of a rotary traveling wave ultrasonic motor with double vibrators.
    Dong Z; Yang M; Chen Z; Xu L; Meng F; Ou W
    Ultrasonics; 2016 Sep; 71():134-141. PubMed ID: 27336793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contact analysis and performance evaluation of ring type traveling wave ultrasonic motors based on a surface contact model.
    Jiang C; Zhao Z; Lu D; Xu Z; Jin L
    Ultrasonics; 2023 Jan; 127():106851. PubMed ID: 36183496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A traveling wave ultrasonic motor of high torque.
    Chen Y; Liu QL; Zhou TY
    Ultrasonics; 2006 Dec; 44 Suppl 1():e581-4. PubMed ID: 16793077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A piezoelectric motor using flexural vibration of a thin piezoelectric membrane.
    Lamberti N; Iula A; Pappalardo M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):23-9. PubMed ID: 18244154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupled tangential-axial resonant modes of piezoelectric hollow cylinders and their application in ultrasonic motors.
    Vyshnevskyy O; Kovalev S; Mehner J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jan; 52(1):31-6. PubMed ID: 15742560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel contact model of piezoelectric traveling wave rotary ultrasonic motors with the finite volume method.
    Renteria-Marquez IA; Renteria-Marquez A; Tseng BTL
    Ultrasonics; 2018 Nov; 90():5-17. PubMed ID: 29902664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.