These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 31479971)

  • 1. Ultrasonic evaluation of strength properties of cemented paste backfill: Effects of mineral admixture and curing temperature.
    Jiang H; Yi H; Yilmaz E; Liu S; Qiu J
    Ultrasonics; 2020 Jan; 100():105983. PubMed ID: 31479971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of strength properties of cemented paste backfill by ultrasonic pulse velocity test.
    Yılmaz T; Ercikdi B; Karaman K; Külekçi G
    Ultrasonics; 2014 Jul; 54(5):1386-94. PubMed ID: 24602334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strength and ultrasonic properties of cemented paste backfill.
    Ercikdi B; Yılmaz T; Külekci G
    Ultrasonics; 2014 Jan; 54(1):195-204. PubMed ID: 23706262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical performance and ultrasonic properties of cemented gangue backfill with admixture of fly ash.
    Wu D; Zhang Y; Liu Y
    Ultrasonics; 2016 Jan; 64():89-96. PubMed ID: 26320702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled effects of fly ash and calcium formate on strength development of cemented tailings backfill.
    Miao X; Wu J; Wang Y; Ma D; Pu H
    Environ Sci Pollut Res Int; 2022 Aug; 29(40):59949-59964. PubMed ID: 35411521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strength development and self-desiccation of saline cemented paste backfill.
    Carnogursky EA; Fall M; Haruna S
    Environ Sci Pollut Res Int; 2024 Feb; 31(10):14894-14911. PubMed ID: 38286929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of slag-based cementitious material on the mechanical behavior and heavy metal immobilization of mine tailings based cemented paste backfill.
    Zhang F; Li Y; Zhang J; Gui X; Zhu X; Zhao C
    Heliyon; 2022 Sep; 8(9):e10695. PubMed ID: 36164537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilisation of construction and demolition waste as cemented paste backfill material for underground mine openings.
    Yılmaz T; Ercikdi B; Deveci H
    J Environ Manage; 2018 Sep; 222():250-259. PubMed ID: 29859465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strength Development and Strain Localization Behavior of Cemented Paste Backfills Using Portland Cement and Fly Ash.
    Zhao Y; Taheri A; Soltani A; Karakus M; Deng A
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31601013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of overflow tailings properties on cemented paste backfill.
    Chen X; Shi X; Zhou J; Du X; Chen Q; Qiu X
    J Environ Manage; 2019 Apr; 235():133-144. PubMed ID: 30682665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lithium slag and fly ash-based binder for cemented fine tailings backfill.
    He Y; Chen Q; Qi C; Zhang Q; Xiao C
    J Environ Manage; 2019 Oct; 248():109282. PubMed ID: 31374435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Curing temperature dependency of the release of arsenic from cemented paste backfill made with Portland cement.
    Bull AJ; Fall M
    J Environ Manage; 2020 Sep; 269():110772. PubMed ID: 32560993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fiber-Reinforced Cemented Paste Backfill: The Effect of Fiber on Strength Properties and Estimation of Strength Using Nonlinear Models.
    Chen X; Shi X; Zhang S; Chen H; Zhou J; Yu Z; Huang P
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32033388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization of phosphogypsum and phosphate tailings for cemented paste backfill.
    Chen Q; Zhang Q; Fourie A; Xin C
    J Environ Manage; 2017 Oct; 201():19-27. PubMed ID: 28633078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of Cemented Oil Shale Residue-Steel Slag-Ground Granulated Blast Furnace Slag Backfill and Its Environmental Impact.
    Li X; Li K; Sun Q; Liu L; Yang J; Xue H
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33921755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag.
    Zhao X; Lim SK; Tan CS; Li B; Ling TC; Huang R; Wang Q
    Materials (Basel); 2015 Jan; 8(2):462-473. PubMed ID: 28787950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of desliming of sulphide-rich mill tailings on the long-term strength of cemented paste backfill.
    Ercikdi B; Baki H; İzki M
    J Environ Manage; 2013 Jan; 115():5-13. PubMed ID: 23220652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings.
    Ercikdi B; Cihangir F; Kesimal A; Deveci H; Alp I
    J Hazard Mater; 2009 Sep; 168(2-3):848-56. PubMed ID: 19299080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strength Development Monitoring of Cemented Paste Backfill Using Guided Waves.
    He W; Zheng C; Li S; Shi W; Zhao K
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic effect of activator nature and curing temperature on time-dependent rheological behavior of cemented paste backfill containing alkali-activated slag.
    Jiang H; Ren L; Gu X; Zheng J; Cui L
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):12857-12871. PubMed ID: 36114965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.