BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 31479988)

  • 1. CMOS based whole cell impedance sensing: Challenges and future outlook.
    Hedayatipour A; Aslanzadeh S; McFarlane N
    Biosens Bioelectron; 2019 Oct; 143():111600. PubMed ID: 31479988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of impedance measurements of whole cells.
    Xu Y; Xie X; Duan Y; Wang L; Cheng Z; Cheng J
    Biosens Bioelectron; 2016 Mar; 77():824-36. PubMed ID: 26513290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CMOS biosensors for in vitro diagnosis - transducing mechanisms and applications.
    Lei KM; Mak PI; Law MK; Martins RP
    Lab Chip; 2016 Sep; 16(19):3664-3681. PubMed ID: 27713991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput impedance spectroscopy biosensor array chip.
    Liu X; Li L; Mason AJ
    Philos Trans A Math Phys Eng Sci; 2014 Mar; 372(2012):20130107. PubMed ID: 24567474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-throughput flow cytometry-on-a-CMOS platform for single-cell dielectric spectroscopy at microwave frequencies.
    Chien JC; Ameri A; Yeh EC; Killilea AN; Anwar M; Niknejad AM
    Lab Chip; 2018 Jul; 18(14):2065-2076. PubMed ID: 29872834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-chip electronic detection of DNA hybridization using precision impedance-based CMOS array sensor.
    Lee KH; Lee JO; Sohn MJ; Lee B; Choi SH; Kim SK; Yoon JB; Cho GH
    Biosens Bioelectron; 2010 Dec; 26(4):1373-9. PubMed ID: 20692155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA-decorated carbon-nanotube-based chemical sensors on complementary metal oxide semiconductor circuitry.
    Chen CL; Yang CF; Agarwal V; Kim T; Sonkusale S; Busnaina A; Chen M; Dokmeci MR
    Nanotechnology; 2010 Mar; 21(9):095504. PubMed ID: 20139486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards CMOS Integrated Microfluidics Using Dielectrophoretic Immobilization.
    Matbaechi Ettehad H; Yadav RK; Guha S; Wenger C
    Biosensors (Basel); 2019 Jun; 9(2):. PubMed ID: 31195725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioimpedance Spectroscopy: Basics and Applications.
    Stupin DD; Kuzina EA; Abelit AA; Emelyanov AK; Nikolaev DM; Ryazantsev MN; Koniakhin SV; Dubina MV
    ACS Biomater Sci Eng; 2021 Jun; 7(6):1962-1986. PubMed ID: 33749256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid-phase chemical and biochemical detection using fully integrated magnetically actuated complementary metal oxide semiconductor resonant cantilever sensor systems.
    Vancura C; Li Y; Lichtenberg J; Kirstein KU; Hierlemann A; Josse F
    Anal Chem; 2007 Feb; 79(4):1646-54. PubMed ID: 17297968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design rule for optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS).
    Price DT; Rahman AR; Bhansali S
    Biosens Bioelectron; 2009 Mar; 24(7):2071-6. PubMed ID: 19101134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scalable nano-bioprobes with sub-cellular resolution for cell detection.
    Kanwal A; Lakshmanan S; Bendiganavale A; Bot CT; Patlolla A; Raj R; Prodan C; Iqbal Z; Thomas GA; Farrow RC
    Biosens Bioelectron; 2013 Jul; 45():267-73. PubMed ID: 23500374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical cell-substrate impedance sensing with field-effect transistors is able to unravel cellular adhesion and detachment processes on a single cell level.
    Susloparova A; Koppenhöfer D; Law JK; Vu XT; Ingebrandt S
    Lab Chip; 2015 Feb; 15(3):668-79. PubMed ID: 25412224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors.
    Wang L; Wang H; Wang L; Mitchelson K; Yu Z; Cheng J
    Biosens Bioelectron; 2008 Sep; 24(1):14-21. PubMed ID: 18511255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cell viability assessment method based on area-normalized impedance spectrum (ANIS).
    Zhang R; Wei M; Chen S; Li G; Zhang F; Yang N; Huang L
    Biosens Bioelectron; 2018 Jul; 110():193-200. PubMed ID: 29621718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of electrode material on the sensitivity of interdigitated electrodes used for Electrical Cell-Substrate Impedance Sensing technology.
    Martinez J; Montalibet A; McAdams E; Faivre M; Ferrigno R
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():813-816. PubMed ID: 29059996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Commercialisation of CMOS integrated circuit technology in multi-electrode arrays for neuroscience and cell-based biosensors.
    Graham AH; Robbins J; Bowen CR; Taylor J
    Sensors (Basel); 2011; 11(5):4943-71. PubMed ID: 22163884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origami microfluidic paper-analytical-devices (omPAD) for sensing and diagnostics.
    Punjiya M; Chung Hee Moon ; Yu Chen ; Sonkusale S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():307-310. PubMed ID: 28268338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in Electrical Impedance Sensing Technology for Single-Cell Analysis.
    Zhang Z; Huang X; Liu K; Lan T; Wang Z; Zhu Z
    Biosensors (Basel); 2021 Nov; 11(11):. PubMed ID: 34821686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.