These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 31479988)

  • 41. Design and validation of a multi-electrode bioimpedance system for enhancing spatial resolution of cellular impedance studies.
    Alexander FA; Celestin M; Price DT; Nanjundan M; Bhansali S
    Analyst; 2013 Jul; 138(13):3728-34. PubMed ID: 23689543
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A micro-cantilever sensor chip based on contact angle analysis for a label-free troponin I immunoassay.
    Yin TI; Zhao Y; Horak J; Bakirci H; Liao HH; Tsai HH; Juang YZ; Urban G
    Lab Chip; 2013 Mar; 13(5):834-42. PubMed ID: 23282576
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sensing and Impedance Characteristics of YbTaO
    Pan TM; Huang YS; Her JL
    Sci Rep; 2018 Aug; 8(1):12902. PubMed ID: 30150683
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 5×5 CMOS capacitive sensor array for detection of the neurotransmitter dopamine.
    Lu MS; Chen YC; Huang PC
    Biosens Bioelectron; 2010 Nov; 26(3):1093-7. PubMed ID: 20855189
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Three-Dimensional (3D) cell culture monitoring: Opportunities and challenges for impedance spectroscopy.
    De León SE; Pupovac A; McArthur SL
    Biotechnol Bioeng; 2020 Apr; 117(4):1230-1240. PubMed ID: 31956986
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Complementary metal-oxide semiconductor (CMOS) image sensor: an insight as a point-of-care label-free immunosensor.
    Kandasamy K; Marimuthu M; Sung GY; Ahn CG; Kim S
    Anal Sci; 2010; 26(12):1215-7. PubMed ID: 21157088
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Real-Time Sensing with Patterned Plasmonic Substrates and a Compact Imager Chip.
    Seiler ST; Rich IS; Lindquist NC
    Methods Mol Biol; 2019; 2027():87-100. PubMed ID: 31309475
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CMOS capacitive biosensors for highly sensitive biosensing applications.
    Chang AY; Lu MS
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4102-5. PubMed ID: 24110634
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CMOS cell sensors for point-of-care diagnostics.
    Adiguzel Y; Kulah H
    Sensors (Basel); 2012; 12(8):10042-66. PubMed ID: 23112587
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Integration of an optical CMOS sensor with a microfluidic channel allows a sensitive readout for biological assays in point-of-care tests.
    Van Dorst B; Brivio M; Van Der Sar E; Blom M; Reuvekamp S; Tanzi S; Groenhuis R; Adojutelegan A; Lous EJ; Frederix F; Stuyver LJ
    Biosens Bioelectron; 2016 Apr; 78():126-131. PubMed ID: 26599482
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Towards on-chip integration of brain imaging photodetectors using standard CMOS process.
    Kamrani E; Lesage F; Sawan M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2668-71. PubMed ID: 24110276
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hydrogel-based diffusion chip with Electric Cell-substrate Impedance Sensing (ECIS) integration for cell viability assay and drug toxicity screening.
    Tran TB; Cho S; Min J
    Biosens Bioelectron; 2013 Dec; 50():453-9. PubMed ID: 23911660
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Very Low Resource Digital Implementation of Bioimpedance Analysis.
    Soulier F; Lamlih A; Kerzérho V; Bernard S; Rouyer T
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31374915
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gentamicin drug monitoring for peritonitis patients by using a CMOS-BioMEMS-based microcantilever sensor.
    Li KW; Yen YK
    Biosens Bioelectron; 2019 Apr; 130():420-426. PubMed ID: 30220446
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CMOS image sensor-based immunodetection by refractive-index change.
    Devadhasan JP; Kim S
    Anal Sci; 2012; 28(9):875-80. PubMed ID: 22975915
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Influence of Electrode Design on Detecting the Effects of Ferric Ammonium Citrate (FAC) on Pre-Osteoblast through Electrical Cell-Substrate Impedance Sensing (ECIS).
    Zhang Z; Yuan X; Guo H; Shang P
    Biosensors (Basel); 2023 Feb; 13(3):. PubMed ID: 36979534
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Online Measurement of Real-Time Cytotoxic Responses Induced by Multi-Component Matrices, such as Natural Products, through Electric Cell-Substrate Impedance Sensing (ECIS).
    Fallarero A; Batista-González AE; Hiltunen AK; Liimatainen J; Karonen M; Vuorela PM
    Int J Mol Sci; 2015 Nov; 16(11):27044-57. PubMed ID: 26569236
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Label-free CMOS bio sensor with on-chip noise reduction scheme for real-time quantitative monitoring of biomolecules.
    Seong-Jin Kim ; Euisik Yoon
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):189-96. PubMed ID: 23853141
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Radiation dosimetry properties of smartphone CMOS sensors.
    Van Hoey O; Salavrakos A; Marques A; Nagao A; Willems R; Vanhavere F; Cauwels V; Nascimento LF
    Radiat Prot Dosimetry; 2016 Mar; 168(3):314-21. PubMed ID: 26041476
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Real-time DNA Amplification and Detection System Based on a CMOS Image Sensor.
    Wang T; Devadhasan JP; Lee do Y; Kim S
    Anal Sci; 2016; 32(6):653-8. PubMed ID: 27302586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.