These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 31480027)

  • 21. Transretinal electrical stimulation by an intrascleral multichannel electrode array in rabbit eyes.
    Nakauchi K; Fujikado T; Kanda H; Morimoto T; Choi JS; Ikuno Y; Sakaguchi H; Kamei M; Ohji M; Yagi T; Nishimura S; Sawai H; Fukuda Y; Tano Y
    Graefes Arch Clin Exp Ophthalmol; 2005 Feb; 243(2):169-74. PubMed ID: 15586287
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monitoring Cortical Response and Electrode-Retina Impedance Under Epiretinal Stimulation in Rats.
    Xie H; Wang Y; Ye Z; Fang S; Xu Z; Wu T; Chan LLH
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1178-1187. PubMed ID: 34152987
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of electrically evoked cortical potential thresholds generated with subretinal or suprachoroidal placement of a microelectrode array in the rabbit.
    Yamauchi Y; Franco LM; Jackson DJ; Naber JF; Ziv RO; Rizzo JF; Kaplan HJ; Enzmann V
    J Neural Eng; 2005 Mar; 2(1):S48-56. PubMed ID: 15876654
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Repeated transchoroidal implantation and explantation of compound subretinal prostheses: an exploratory study in rabbits.
    Gekeler F; Kobuch K; Blatsios G; Zrenner E; Shinoda K
    Jpn J Ophthalmol; 2010 Sep; 54(5):467-75. PubMed ID: 21052911
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Compound subretinal prostheses with extra-ocular parts designed for human trials: successful long-term implantation in pigs.
    Gekeler F; Szurman P; Grisanti S; Weiler U; Claus R; Greiner TO; Völker M; Kohler K; Zrenner E; Bartz-Schmidt KU
    Graefes Arch Clin Exp Ophthalmol; 2007 Feb; 245(2):230-41. PubMed ID: 16645861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Focal activation of the feline retina via a suprachoroidal electrode array.
    Wong YT; Chen SC; Seo JM; Morley JW; Lovell NH; Suaning GJ
    Vision Res; 2009 Mar; 49(8):825-33. PubMed ID: 19272402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cortical activation following chronic passive implantation of a wide-field suprachoroidal retinal prosthesis.
    Villalobos J; Fallon JB; Nayagam DA; Shivdasani MN; Luu CD; Allen PJ; Shepherd RK; Williams CE
    J Neural Eng; 2014 Aug; 11(4):046017. PubMed ID: 24965866
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cortical activation via an implanted wireless retinal prosthesis.
    Walter P; Kisvárday ZF; Görtz M; Alteheld N; Rossler G; Stieglitz T; Eysel UT
    Invest Ophthalmol Vis Sci; 2005 May; 46(5):1780-5. PubMed ID: 15851582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chronic electrical stimulation with a suprachoroidal retinal prosthesis: a preclinical safety and efficacy study.
    Nayagam DA; Williams RA; Allen PJ; Shivdasani MN; Luu CD; Salinas-LaRosa CM; Finch S; Ayton LN; Saunders AL; McPhedran M; McGowan C; Villalobos J; Fallon JB; Wise AK; Yeoh J; Xu J; Feng H; Millard R; McWade M; Thien PC; Williams CE; Shepherd RK
    PLoS One; 2014; 9(5):e97182. PubMed ID: 24853376
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays.
    Rizzo JF; Wyatt J; Loewenstein J; Kelly S; Shire D
    Invest Ophthalmol Vis Sci; 2003 Dec; 44(12):5355-61. PubMed ID: 14638738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a silicon retinal implant: cortical evoked potentials following focal stimulation of the rabbit retina with light and electricity.
    Nadig MN
    Clin Neurophysiol; 1999 Sep; 110(9):1545-53. PubMed ID: 10479021
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of the electrode array-retina gap distance on visual function in patients with the Argus II retinal prosthesis.
    Naidu A; Ghani N; Yazdanie MS; Chaudhary K
    BMC Ophthalmol; 2020 Sep; 20(1):366. PubMed ID: 32943044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Implantation of Modular Photovoltaic Subretinal Prosthesis.
    Lee DY; Lorach H; Huie P; Palanker D
    Ophthalmic Surg Lasers Imaging Retina; 2016 Feb; 47(2):171-4. PubMed ID: 26878451
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feasibility of microelectrode array (MEA) based on silicone-polyimide hybrid for retina prosthesis.
    Kim ET; Kim C; Lee SW; Seo JM; Chung H; Kim SJ
    Invest Ophthalmol Vis Sci; 2009 Sep; 50(9):4337-41. PubMed ID: 19264890
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo electrical stimulation of rabbit retina with a microfabricated array: strategies to maximize responses for prospective assessment of stimulus efficacy and biocompatibility.
    Rizzo JF; Goldbaum S; Shahin M; Denison TJ; Wyatt J
    Restor Neurol Neurosci; 2004; 22(6):429-43. PubMed ID: 15798362
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Response properties of electrically evoked potential elicited by multi-channel penetrative optic nerve stimulation in rabbits.
    Cai C; Li L; Li X; Chai X; Sun J; Lu Y; Sui X; Chen P; Ren Q
    Doc Ophthalmol; 2009 Jun; 118(3):191-204. PubMed ID: 19050950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Virtual electrodes by current steering in retinal prostheses.
    Dumm G; Fallon JB; Williams CE; Shivdasani MN
    Invest Ophthalmol Vis Sci; 2014 Oct; 55(12):8077-85. PubMed ID: 25335975
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo assessment of subretinally implanted microphotodiode arrays in cats by optical coherence tomography and fluorescein angiography.
    Völker M; Shinoda K; Sachs H; Gmeiner H; Schwarz T; Kohler K; Inhoffen W; Bartz-Schmidt KU; Zrenner E; Gekeler F
    Graefes Arch Clin Exp Ophthalmol; 2004 Sep; 242(9):792-9. PubMed ID: 15179515
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Access resistance of stimulation electrodes as a function of electrode proximity to the retina.
    Majdi JA; Minnikanti S; Peixoto N; Agrawal A; Cohen ED
    J Neural Eng; 2015 Feb; 12(1):016006. PubMed ID: 25474329
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The relationship between retinal damage and current intensity in a pre-clinical suprachoroidal-transretinal stimulation model using a laser-formed microporous electrode.
    Kanda H; Nakano Y; Terasawa Y; Morimoto T; Fujikado T
    J Neural Eng; 2017 Oct; 14(5):056013. PubMed ID: 28675151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.