These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Biomechanically, structurally and functionally meticulously tailored polycaprolactone/silk fibroin scaffold for meniscus regeneration. Li Z; Wu N; Cheng J; Sun M; Yang P; Zhao F; Zhang J; Duan X; Fu X; Zhang J; Hu X; Chen H; Ao Y Theranostics; 2020; 10(11):5090-5106. PubMed ID: 32308770 [TBL] [Abstract][Full Text] [Related]
7. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Das S; Pati F; Choi YJ; Rijal G; Shim JH; Kim SW; Ray AR; Cho DW; Ghosh S Acta Biomater; 2015 Jan; 11():233-46. PubMed ID: 25242654 [TBL] [Abstract][Full Text] [Related]
8. Tissue engineering of human knee meniscus using functionalized and reinforced silk-polyvinyl alcohol composite three-dimensional scaffolds: Understanding the in vitro and in vivo behavior. Pillai MM; Gopinathan J; Senthil Kumar R; Sathish Kumar G; Shanthakumari S; Sahanand KS; Bhattacharyya A; Selvakumar R J Biomed Mater Res A; 2018 Jun; 106(6):1722-1731. PubMed ID: 29460414 [TBL] [Abstract][Full Text] [Related]
9. Fast Setting Silk Fibroin Bioink for Bioprinting of Patient-Specific Memory-Shape Implants. Costa JB; Silva-Correia J; Oliveira JM; Reis RL Adv Healthc Mater; 2017 Nov; 6(22):. PubMed ID: 29106065 [TBL] [Abstract][Full Text] [Related]
10. Tricomposite gelatin-carboxymethylcellulose-alginate bioink for direct and indirect 3D printing of human knee meniscal scaffold. P B S; S G; J P; Muthusamy S; R N; Krishnakumar GS; R S Int J Biol Macromol; 2022 Jan; 195():179-189. PubMed ID: 34863969 [TBL] [Abstract][Full Text] [Related]
11. Silk fibroin reactive inks for 3D printing crypt-like structures. Heichel DL; Tumbic JA; Boch ME; Ma AWK; Burke KA Biomed Mater; 2020 Sep; 15(5):055037. PubMed ID: 32924975 [TBL] [Abstract][Full Text] [Related]
12. Light-based 3D bioprinting of bone tissue scaffolds with tunable mechanical properties and architecture from photocurable silk fibroin. Rajput M; Mondal P; Yadav P; Chatterjee K Int J Biol Macromol; 2022 Mar; 202():644-656. PubMed ID: 35066028 [TBL] [Abstract][Full Text] [Related]
13. Biocompatible fluorescent silk fibroin bioink for digital light processing 3D printing. Lee YJ; Lee JS; Ajiteru O; Lee OJ; Lee JS; Lee H; Kim SW; Park JW; Kim KY; Choi KY; Hong H; Sultan T; Kim SH; Park CH Int J Biol Macromol; 2022 Jul; 213():317-327. PubMed ID: 35605719 [TBL] [Abstract][Full Text] [Related]
14. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Huang L; Du X; Fan S; Yang G; Shao H; Li D; Cao C; Zhu Y; Zhu M; Zhang Y Carbohydr Polym; 2019 Oct; 221():146-156. PubMed ID: 31227153 [TBL] [Abstract][Full Text] [Related]
15. Development of a biomimetic arch-like 3D bioprinted construct for cartilage regeneration using gelatin methacryloyl and silk fibroin-gelatin bioinks. Chakraborty J; Fernández-Pérez J; van Kampen KA; Roy S; Ten Brink T; Mota C; Ghosh S; Moroni L Biofabrication; 2023 Apr; 15(3):. PubMed ID: 36947889 [TBL] [Abstract][Full Text] [Related]
16. Structurally and Functionally Optimized Silk-Fibroin-Gelatin Scaffold Using 3D Printing to Repair Cartilage Injury In Vitro and In Vivo. Shi W; Sun M; Hu X; Ren B; Cheng J; Li C; Duan X; Fu X; Zhang J; Chen H; Ao Y Adv Mater; 2017 Aug; 29(29):. PubMed ID: 28585319 [TBL] [Abstract][Full Text] [Related]
17. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542 [TBL] [Abstract][Full Text] [Related]
18. Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting. Kim SH; Kim DY; Lim TH; Park CH Adv Exp Med Biol; 2020; 1249():53-66. PubMed ID: 32602090 [TBL] [Abstract][Full Text] [Related]
19. 3D cell-printing of biocompatible and functional meniscus constructs using meniscus-derived bioink. Chae S; Lee SS; Choi YJ; Hong DH; Gao G; Wang JH; Cho DW Biomaterials; 2021 Jan; 267():120466. PubMed ID: 33130320 [TBL] [Abstract][Full Text] [Related]
20. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds. Sun K; Li R; Jiang W; Sun Y; Li H Biochem Biophys Res Commun; 2016 Sep; 477(4):1085-1091. PubMed ID: 27404126 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]