These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 31480253)

  • 1. The Impact of Shear and Elongational Forces on Structural Formation of Polyacrylonitrile/Carbon Nanotubes Composite Fibers during Wet Spinning Process.
    Mirbaha H; Nourpanah P; Scardi P; D'incau M; Greco G; Valentini L; Bittolo Bon S; Arbab S; Pugno N
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31480253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheological Behavior of Amino-Functionalized Multi-Walled Carbon Nanotube/Polyacrylonitrile Concentrated Solutions and Crystal Structure of Composite Fibers.
    Zhang H; Quan L; Shi F; Li C; Liu H; Xu L
    Polymers (Basel); 2018 Feb; 10(2):. PubMed ID: 30966222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Structure and Properties of Polyacrylonitrile Nascent Composite Fibers with Grafted Multi Walled Carbon Nanotubes Prepared by Wet Spinning Method.
    Zhang H; Quan L; Gao A; Tong Y; Shi F; Xu L
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale Structure-Property Relationships of Polyacrylonitrile/CNT Composites as a Function of Polymer Crystallinity and CNT Diameter.
    Gissinger JR; Pramanik C; Newcomb B; Kumar S; Heinz H
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1017-1027. PubMed ID: 29231715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drawing dependent structures, mechanical properties and cyclization behaviors of polyacrylonitrile and polyacrylonitrile/carbon nanotube composite fibers prepared by plasticized spinning.
    Li X; Qin A; Zhao X; Liu D; Wang H; He C
    Phys Chem Chem Phys; 2015 Sep; 17(34):21856-65. PubMed ID: 26235219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Wet-Spinning Process for Producing Carbon Nanotube/Polyvinylidene Fluoride Fibers Having Highly Consistent Electrical and Mechanical Properties.
    Kang KW; Choi CW; Jin JW
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macroscopic fibers of well-aligned carbon nanotubes by wet spinning.
    Zhang S; Koziol KK; Kinloch IA; Windle AH
    Small; 2008 Aug; 4(8):1217-22. PubMed ID: 18666161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Process Optimization for Manufacturing PAN-Based Conductive Yarn with Carbon Nanomaterials through Wet Spinning.
    Kim H; Moon H; Lim D; Jeong W
    Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanofibers based carbon-carbon composite fibers.
    Hiremath N; Bhat S; Boy R; Evora MC; Naskar AK; Mays J; Bhat G
    Discov Nano; 2023 Dec; 18(1):159. PubMed ID: 38127269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers.
    Iwamoto S; Isogai A; Iwata T
    Biomacromolecules; 2011 Mar; 12(3):831-6. PubMed ID: 21302950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced mechanical properties of polyacrylonitrile/multiwall carbon nanotube composite fibers.
    Weisenberger MC; Grulke EA; Jacques D; Rantell T; Andrews R
    J Nanosci Nanotechnol; 2003 Dec; 3(6):535-9. PubMed ID: 15002136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of vertically aligned carbon nanotube forest for solid state fiber spinning.
    Ryu SW; Hwang JW; Hong SH
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5653-7. PubMed ID: 22966627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the Ionic Liquid Structure on the Melt Processability of Polyacrylonitrile Fibers.
    Martin HJ; Luo H; Chen H; Do-Thanh CL; Kearney LT; Mayes R; Naskar AK; Dai S
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8663-8673. PubMed ID: 31977177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ compatibilized starch/polyacylonitrile composite fiber fabricated via dry-wet spinning technique.
    Wang F; Chang L; Wang L; Gong Y; Guo Y; Shi Q; Quan F
    Int J Biol Macromol; 2022 Jul; 212():412-419. PubMed ID: 35577192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dry-Jet Wet Spinning of Thermally Stable Lignin-Textile Grade Polyacrylonitrile Fibers Regenerated from Chloride-Based Ionic Liquids Compounds.
    Al Aiti M; Das A; Kanerva M; Järventausta M; Johansson P; Scheffler C; Göbel M; Jehnichen D; Brünig H; Wulff L; Boye S; Arnhold K; Kuusipalo J; Heinrich G
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32825486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of Electrical and Mechanical Properties through the Adjustment of Design Parameters in the Wet Spinning Process of Carbon Nanotube/Polyvinylidene Fluoride Fibers Using Response Surface Methodology.
    Choi CW; Jin JW; Kang KW
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyacrylonitrile/carbon nanotube composite films.
    Guo H; Minus ML; Jagannathan S; Kumar S
    ACS Appl Mater Interfaces; 2010 May; 2(5):1331-42. PubMed ID: 20441181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-linking multiwall carbon nanotubes using PFPA to build robust, flexible and highly aligned large-scale sheets and yarns.
    Inoue Y; Nakamura K; Miyasaka Y; Nakano T; Kletetschka G
    Nanotechnology; 2016 Mar; 27(11):115701. PubMed ID: 26871413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional Bionanocomposite Fibers of Chitosan Filled with Cellulose Nanofibers Obtained by Gel Spinning.
    Marquez-Bravo S; Doench I; Molina P; Bentley FE; Tamo AK; Passieux R; Lossada F; David L; Osorio-Madrazo A
    Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34068136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-Coagulant Spinning of High-Strength Fibers from Homopolymer Polyacrylonitrile Synthesized via Anionic Polymerisation.
    Skvortsov IY; Kuzin MS; Gerasimenko PS; Mironova MV; Golubev YV; Kulichikhin VG
    Polymers (Basel); 2024 Apr; 16(9):. PubMed ID: 38732654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.