These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31480450)

  • 1. Rational Design of an Orthogonal Pair of Bimolecular RNase P Ribozymes through Heterologous Assembly of Their Modular Domains.
    Nozawa Y; Hagihara M; Rahman MS; Matsumura S; Ikawa Y
    Biology (Basel); 2019 Aug; 8(3):. PubMed ID: 31480450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modular Architecture of Bacterial RNase P Ribozymes as a Structural Platform for RNA Nanostructure Design.
    Nozawa Y; Hagihara M; Matsumura S; Ikawa Y
    Chimia (Aarau); 2018 Dec; 72(12):882-887. PubMed ID: 30648955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyethylene glycol molecular crowders enhance the catalytic ability of bimolecular bacterial RNase P ribozymes.
    Rahman MS; Gulshan MA; Matsumura S; Ikawa Y
    Nucleosides Nucleotides Nucleic Acids; 2020; 39(5):715-729. PubMed ID: 32039645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic RNA Oligomers Formed by Co-Oligomerization of a Pair of Bimolecular RNase P Ribozymes.
    Siddika MA; Yamada T; Aoyama R; Hidaka K; Sugiyama H; Endo M; Matsumura S; Ikawa Y
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oligomerization of a modular ribozyme assembly of which is controlled by a programmable RNA-RNA interface between two structural modules.
    Tsuruga R; Uehara N; Suzuki Y; Furuta H; Sugiyama H; Endo M; Matsumura S; Ikawa Y
    J Biosci Bioeng; 2019 Oct; 128(4):410-415. PubMed ID: 31109874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible Assembly of Engineered Tetrahymena Ribozymes Forming Polygonal RNA Nanostructures with Catalytic Ability.
    Mori Y; Oi H; Suzuki Y; Hidaka K; Sugiyama H; Endo M; Matsumura S; Ikawa Y
    Chembiochem; 2021 Jun; 22(12):2168-2176. PubMed ID: 33876531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and isolation of ribozyme-substrate pairs using RNase P-based ribozymes containing altered substrate binding sites.
    Mobley EM; Pan T
    Nucleic Acids Res; 1999 Nov; 27(21):4298-304. PubMed ID: 10518624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of ribonuclease P--a universal ribozyme.
    Torres-Larios A; Swinger KK; Pan T; Mondragón A
    Curr Opin Struct Biol; 2006 Jun; 16(3):327-35. PubMed ID: 16650980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of external molecular factors on adaptation of bacterial RNase P ribozymes to thermophilic conditions.
    Rahman MS; Matsumura S; Ikawa Y
    Biochem Biophys Res Commun; 2020 Mar; 523(2):342-347. PubMed ID: 31866011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modular construction for function of a ribonucleoprotein enzyme: the catalytic domain of Bacillus subtilis RNase P complexed with B. subtilis RNase P protein.
    Loria A; Pan T
    Nucleic Acids Res; 2001 May; 29(9):1892-7. PubMed ID: 11328872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tecto-GIRz: Engineered Group I Ribozyme the Catalytic Ability of Which Can Be Controlled by Self-Dimerization.
    Tanaka T; Matsumura S; Furuta H; Ikawa Y
    Chembiochem; 2016 Aug; 17(15):1448-55. PubMed ID: 27247120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmable formation of catalytic RNA triangles and squares by assembling modular RNA enzymes.
    Oi H; Fujita D; Suzuki Y; Sugiyama H; Endo M; Matsumura S; Ikawa Y
    J Biochem; 2017 May; 161(5):451-462. PubMed ID: 28096453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular construction of a tertiary RNA structure: the specificity domain of the Bacillus subtilis RNase P RNA.
    Qin H; Sosnick TR; Pan T
    Biochemistry; 2001 Sep; 40(37):11202-10. PubMed ID: 11551219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design of self-cleaving pre-tRNA-ribonuclease P RNA conjugates.
    Frank DN; Harris ME; Pace NR
    Biochemistry; 1994 Sep; 33(35):10800-8. PubMed ID: 8075082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of allosteric hammerhead ribozymes activated by ligand-induced structure stabilization.
    Soukup GA; Breaker RR
    Structure; 1999 Jul; 7(7):783-91. PubMed ID: 10425680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro selection of RNase P RNA reveals optimized catalytic activity in a highly conserved structural domain.
    Frank DN; Ellington AE; Pace NR
    RNA; 1996 Dec; 2(12):1179-88. PubMed ID: 8972768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generating new ligand-binding RNAs by affinity maturation and disintegration of allosteric ribozymes.
    Soukup GA; DeRose EC; Koizumi M; Breaker RR
    RNA; 2001 Apr; 7(4):524-36. PubMed ID: 11345431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Diversity of Ribonuclease P: Protein and RNA Catalysts with Analogous Biological Functions.
    Klemm BP; Wu N; Chen Y; Liu X; Kaitany KJ; Howard MJ; Fierke CA
    Biomolecules; 2016 May; 6(2):. PubMed ID: 27187488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic and Structural Studies of Protein-Only RNase P Compared to Ribonucleoproteins Reveal the Two Faces of the Same Enzymatic Activity.
    Schelcher C; Sauter C; Giegé P
    Biomolecules; 2016 Jun; 6(3):. PubMed ID: 27348014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of RNase P ribozyme for gene-targeting applications.
    Raj SM; Liu F
    Gene; 2003 Aug; 313():59-69. PubMed ID: 12957377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.