These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 31480483)
1. A Pathway-Based Kernel Boosting Method for Sample Classification Using Genomic Data. Zeng L; Yu Z; Zhao H Genes (Basel); 2019 Aug; 10(9):. PubMed ID: 31480483 [TBL] [Abstract][Full Text] [Related]
2. Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies. Friedrichs S; Manitz J; Burger P; Amos CI; Risch A; Chang-Claude J; Wichmann HE; Kneib T; Bickeböller H; Hofner B Comput Math Methods Med; 2017; 2017():6742763. PubMed ID: 28785300 [TBL] [Abstract][Full Text] [Related]
3. Adaptive NetworkProfiler for Identifying Cancer Characteristic-Specific Gene Regulatory Networks. Park H; Shimamura T; Imoto S; Miyano S J Comput Biol; 2018 Feb; 25(2):130-145. PubMed ID: 29053381 [TBL] [Abstract][Full Text] [Related]
4. Pathway aggregation for survival prediction via multiple kernel learning. Sinnott JA; Cai T Stat Med; 2018 Jul; 37(16):2501-2515. PubMed ID: 29664143 [TBL] [Abstract][Full Text] [Related]
5. Integrating gene set analysis and nonlinear predictive modeling of disease phenotypes using a Bayesian multitask formulation. Gönen M BMC Bioinformatics; 2016 Dec; 17(Suppl 16):0. PubMed ID: 28105911 [TBL] [Abstract][Full Text] [Related]
6. I-Boost: an integrative boosting approach for predicting survival time with multiple genomics platforms. Wong KY; Fan C; Tanioka M; Parker JS; Nobel AB; Zeng D; Lin DY; Perou CM Genome Biol; 2019 Mar; 20(1):52. PubMed ID: 30845957 [TBL] [Abstract][Full Text] [Related]
7. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data. Zhang J; Zhang S; Wang Y; Zhang XS BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034 [TBL] [Abstract][Full Text] [Related]
8. Identifying overlapping mutated driver pathways by constructing gene networks in cancer. Wu H; Gao L; Li F; Song F; Yang X; Kasabov N BMC Bioinformatics; 2015; 16 Suppl 5(Suppl 5):S3. PubMed ID: 25859819 [TBL] [Abstract][Full Text] [Related]
9. LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network. Wei PJ; Zhang D; Xia J; Zheng CH BMC Bioinformatics; 2016 Dec; 17(Suppl 17):467. PubMed ID: 28155630 [TBL] [Abstract][Full Text] [Related]
10. A network-based pathway-expanding approach for pathway analysis. Zhang Q; Li J; Xie H; Xue H; Wang Y BMC Bioinformatics; 2016 Dec; 17(Suppl 17):536. PubMed ID: 28155638 [TBL] [Abstract][Full Text] [Related]
11. PAGED: a pathway and gene-set enrichment database to enable molecular phenotype discoveries. Huang H; Wu X; Sonachalam M; Mandape SN; Pandey R; MacDorman KF; Wan P; Chen JY BMC Bioinformatics; 2012; 13 Suppl 15(Suppl 15):S2. PubMed ID: 23046413 [TBL] [Abstract][Full Text] [Related]
12. Accurate cancer phenotype prediction with AKLIMATE, a stacked kernel learner integrating multimodal genomic data and pathway knowledge. Uzunangelov V; Wong CK; Stuart JM PLoS Comput Biol; 2021 Apr; 17(4):e1008878. PubMed ID: 33861732 [TBL] [Abstract][Full Text] [Related]
14. Integrative pathway-based survival prediction utilizing the interaction between gene expression and DNA methylation in breast cancer. Kim SY; Kim TR; Jeong HH; Sohn KA BMC Med Genomics; 2018 Sep; 11(Suppl 3):68. PubMed ID: 30255812 [TBL] [Abstract][Full Text] [Related]
15. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis. Li A; Chapuy B; Varelas X; Sebastiani P; Monti S Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402 [TBL] [Abstract][Full Text] [Related]
16. Knowledge boosting: a graph-based integration approach with multi-omics data and genomic knowledge for cancer clinical outcome prediction. Kim D; Joung JG; Sohn KA; Shin H; Park YR; Ritchie MD; Kim JH J Am Med Inform Assoc; 2015 Jan; 22(1):109-20. PubMed ID: 25002459 [TBL] [Abstract][Full Text] [Related]
17. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data. Wang E; Zaman N; Mcgee S; Milanese JS; Masoudi-Nejad A; O'Connor-McCourt M Semin Cancer Biol; 2015 Feb; 30():4-12. PubMed ID: 24747696 [TBL] [Abstract][Full Text] [Related]
18. On the Sample Complexity of Cancer Pathways Identification. Vandin F; Raphael BJ; Upfal E J Comput Biol; 2016 Jan; 23(1):30-41. PubMed ID: 26645471 [TBL] [Abstract][Full Text] [Related]
19. Single cell genomics reveals activation signatures of endogenous SCAR's networks in aneuploid human embryos and clinically intractable malignant tumors. Glinsky GV Cancer Lett; 2016 Oct; 381(1):176-93. PubMed ID: 27497790 [TBL] [Abstract][Full Text] [Related]
20. Multiple-kernel learning for genomic data mining and prediction. Wilson CM; Li K; Yu X; Kuan PF; Wang X BMC Bioinformatics; 2019 Aug; 20(1):426. PubMed ID: 31416413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]