These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 31480496)
1. Molecular Dynamics Simulation of the Influence of Nanoscale Structure on Water Wetting and Condensation. Hiratsuka M; Emoto M; Konno A; Ito S Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31480496 [TBL] [Abstract][Full Text] [Related]
2. Lattice Boltzmann Modeling of Condensation Heat Transfer on Downward-Facing Surfaces with Different Wettabilities. Wang X; Xu B; Chen Z; Yang Y; Cao Q Langmuir; 2020 Aug; 36(31):9204-9214. PubMed ID: 32660253 [TBL] [Abstract][Full Text] [Related]
3. Depletion of Lubricant from Nanostructured Oil-Infused Surfaces by Pendant Condensate Droplets. Adera S; Alvarenga J; Shneidman AV; Zhang CT; Davitt A; Aizenberg J ACS Nano; 2020 Jul; 14(7):8024-8035. PubMed ID: 32490664 [TBL] [Abstract][Full Text] [Related]
4. Review of droplet dynamics and dropwise condensation enhancement: Theory, experiments and applications. Wang X; Xu B; Chen Z; Del Col D; Li D; Zhang L; Mou X; Liu Q; Yang Y; Cao Q Adv Colloid Interface Sci; 2022 Jul; 305():102684. PubMed ID: 35525088 [TBL] [Abstract][Full Text] [Related]
5. Dependencies of Surface Condensation on the Wettability and Nanostructure Size Differences. Liao MJ; Duan LQ Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32937887 [TBL] [Abstract][Full Text] [Related]
6. Design of Nanostructured Surfaces for Efficient Condensation by Controlling Condensation Modes. Che Q; Wang F; Zhao X Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677113 [TBL] [Abstract][Full Text] [Related]
7. Dynamics of nanoscale droplets on moving surfaces. Ritos K; Dongari N; Borg MK; Zhang Y; Reese JM Langmuir; 2013 Jun; 29(23):6936-43. PubMed ID: 23683083 [TBL] [Abstract][Full Text] [Related]
8. Wetting State Transition of Laser Direct Writing Aluminum Surface Based on Coupling Effect of Micro/Nanoscale Characteristics. Wan Q; Hu X; Yu T; Guo P; Wang J; Shi H; Chen S Langmuir; 2024 Jul; 40(29):15196-15204. PubMed ID: 39007690 [TBL] [Abstract][Full Text] [Related]
9. Condensation Heat Transfer Correlation for Micro/Nanostructure Properties of Surfaces. Shin Y; Jeong S; Lee KY; Woo S; Hwang W ACS Omega; 2022 Sep; 7(38):33837-33844. PubMed ID: 36188300 [TBL] [Abstract][Full Text] [Related]
10. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation. Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672 [TBL] [Abstract][Full Text] [Related]
11. Impact of air and water vapor environments on the hydrophobicity of surfaces. Weisensee PB; Neelakantan NK; Suslick KS; Jacobi AM; King WP J Colloid Interface Sci; 2015 Sep; 453():177-185. PubMed ID: 25985421 [TBL] [Abstract][Full Text] [Related]
12. Heterogeneous nucleation of argon vapor on the nanostructure surface with molecular dynamics simulation. Wang Q; Xie H; Liu J; Liu C J Mol Graph Model; 2020 Nov; 100():107674. PubMed ID: 32750651 [TBL] [Abstract][Full Text] [Related]
13. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. Miljkovic N; Enright R; Wang EN ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016 [TBL] [Abstract][Full Text] [Related]
14. Effects of Solid Fraction on Droplet Wetting and Vapor Condensation: A Molecular Dynamic Simulation Study. Gao S; Liao Q; Liu W; Liu Z Langmuir; 2017 Oct; 33(43):12379-12388. PubMed ID: 28980811 [TBL] [Abstract][Full Text] [Related]
15. Advances in micro and nanoengineered surfaces for enhancing boiling and condensation heat transfer: a review. Upot NV; Fazle Rabbi K; Khodakarami S; Ho JY; Kohler Mendizabal J; Miljkovic N Nanoscale Adv; 2023 Feb; 5(5):1232-1270. PubMed ID: 36866258 [TBL] [Abstract][Full Text] [Related]
16. Dropwise condensation on solid hydrophilic surfaces. Cha H; Vahabi H; Wu A; Chavan S; Kim MK; Sett S; Bosch SA; Wang W; Kota AK; Miljkovic N Sci Adv; 2020 Jan; 6(2):eaax0746. PubMed ID: 31950076 [TBL] [Abstract][Full Text] [Related]
17. Evaporation-Crystallization Method to Promote Coalescence-Induced Jumping on Superhydrophobic Surfaces. Han T; Choi Y; Kwon JT; Kim MH; Jo H Langmuir; 2020 Aug; 36(33):9843-9848. PubMed ID: 32787044 [TBL] [Abstract][Full Text] [Related]
18. Dropwise condensation: From fundamentals of wetting, nucleation, and droplet mobility to performance improvement by advanced functional surfaces. Zheng SF; Gross U; Wang XD Adv Colloid Interface Sci; 2021 Sep; 295():102503. PubMed ID: 34411880 [TBL] [Abstract][Full Text] [Related]
19. Wetting Transition of Condensed Droplets on Nanostructured Superhydrophobic Surfaces: Coordination of Surface Properties and Condensing Conditions. Wen R; Lan Z; Peng B; Xu W; Yang R; Ma X ACS Appl Mater Interfaces; 2017 Apr; 9(15):13770-13777. PubMed ID: 28362085 [TBL] [Abstract][Full Text] [Related]
20. Microscopic insight into surface wetting: relations between interfacial water structure and the underlying lattice constant. Zhu C; Li H; Huang Y; Zeng XC; Meng S Phys Rev Lett; 2013 Mar; 110(12):126101. PubMed ID: 25166822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]